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Scalable Variational Inference for Bayesian
Variable Selection in Regression, and Its
Accuracy in Genetic Association Studies

Peter Carbonetto∗ and Matthew Stephens†

Abstract. The Bayesian approach to variable selection in regression is a powerful
tool for tackling many scientific problems. Inference for variable selection models is
usually implemented using Markov chain Monte Carlo (MCMC). Because MCMC
can impose a high computational cost in studies with a large number of variables,
we assess an alternative to MCMC based on a simple variational approximation.
Our aim is to retain useful features of Bayesian variable selection at a reduced cost.
Using simulations designed to mimic genetic association studies, we show that this
simple variational approximation yields posterior inferences in some settings that
closely match exact values. In less restrictive (and more realistic) conditions, we
show that posterior probabilities of inclusion for individual variables are often
incorrect, but variational estimates of other useful quantities—including posterior
distributions of the hyperparameters—are remarkably accurate. We illustrate how
these results guide the use of variational inference for a genome-wide association
study with thousands of samples and hundreds of thousands of variables.

Keywords: variable selection, variational inference, genetic association studies,
Monte Carlo

1 Introduction

Many scientific questions are naturally framed as a variable selection problem: which
variables X1, . . . , Xp under investigation are useful for predicting outcome Y , assuming
a linear model E[Y ] = β0 + X1β1 + · · · + Xpβp? Among the variety of approaches to
variable selection for regression, the Bayesian approach (George and McCulloch 1997;
Raftery, Madigan, and Hoeting 1997) stands out because we can assess the predictive
value of a variable Xi simply by computing the posterior probability that it is included
in the linear model (i.e. the posterior probability that its coefficient βi is not zero).
But exactly computing this posterior probability of inclusion is intractable because it
involves summing over a combinatorially large number of models. Confronted with
this fact, our goal is to make Bayesian variable selection viable for large problems with
hundreds of thousands—if not millions—of variables that might explain outcome Y . We
assess the potential of an approximation based on variational methods (Jordan et al.
1999) for achieving this aim.

The widespread use of the Bayesian approach to variable selection can be traced
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back to the advent of Markov chain Monte Carlo methods that effectively explore the
posterior distribution (Clyde, Ghosh, and Littman 2011; Dellaportas, Forster, and Nt-
zoufras 2002; George and McCulloch 1993). MCMC methods avoid computing posterior
probabilities for all 2p combinations of predictors by focusing on subsets of high proba-
bility. But it can be difficult—or, at worst, prohibitive—to implement a Markov chain
that efficiently explores the model space when we intend to investigate large numbers
of variables that may predict Y . Our motivation is the analysis of genome-wide asso-
ciation studies (Servin and Stephens 2007; Stephens and Balding 2009); a present-day
study can involve thousands of samples and hundreds of thousands of genetic variants
that potentially explain a phenotype of interest (such as LDL cholesterol levels). Iden-
tifying the most promising genetic candidates could eventually point us to biological
mechanisms underlying the phenotype. We would like to pursue the Bayesian approach
to variable selection for genome-wide associations studies, and though sophisticated
MCMC methods have been designed for this problem (Bottolo and Richardson 2010;
Guan and Stephens 2011), they can take weeks to produce reasonably accurate infer-
ences. And genetic association studies are only getting bigger—in the future we would
like to tackle genome-wide association studies with millions of variables and hundreds
of thousands of samples. The Lasso (Tibshirani 1996) and related penalized regres-
sion methods (Tibshirani 2011) that compute a posterior mode can more easily handle
large variable selection problems, and in fact they have been applied to genome-wide
association studies (He and Lin 2011; Hoggart et al. 2008; Wu et al. 2009). But these
methods are less suited to the analysis of genetic association studies because, among
other reasons, they do not easily quantify statistical support for individual associations
(Guan and Stephens 2011).1

We investigate a two-part solution to this problem using variational methods (Jordan
et al. 1999; Ormerod and Wand 2010; Wainwright and Jordan 2008) and importance
sampling (e.g. Andrieu et al. 2003). Each part is straightforward to explain.

The basic idea behind the first part is to recast the problem of computing poste-
rior probabilities—which is inherently a high-dimensional integration problem—as an
optimization problem by introducing a class of approximating distributions, then opti-
mizing some criterion to find the distribution within this class that best matches the
posterior. To make this approach viable for large problems, we force the approximating
distribution to observe a simple conditional independence property, following Logsdon,
Hoffman, and Mezey (2010): each regression coefficient βi is independent of the other
regression coefficients a posteriori, given the observations and hyperparameters. (In the
variational methods literature, this is known as a “mean field” approximation.) We
then search for a distribution with this conditional independence property that fits the
posterior as well as possible. This procedure scales linearly with the number of variables.

The second part to our solution is to use importance sampling to compute the low-
dimension posterior of the hyperparameters. Since each importance weight includes the
marginal likelihood of the hyperparameters, and since this marginal likelihood is in-

1Meinshausen et al. (2009) describe a way to derive p-values from Lasso estimates. But recent work
by He and Lin (2011) suggests that this procedure may be too conservative for use in genome-wide
association studies, and other high-dimensional variable selection problems.
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tractable to compute, we replace it with a lower bound calculated using the variational
approximation obtained in the first part. This idea of replacing the marginal likelihood
with its variational lower bound is not new—for example, this is the idea behind varia-
tional expectation maximization, where the maximum a posteriori solution is replaced
with the maximum of the lower bound (Blei et al. 2003; Heskes et al. 2004). This same
idea is also used in several recent papers to improve variational inference (Bouchard and
Zoeter 2009; Cseke and Heskes 2011; Ormerod 2011).

Variational estimates of posterior distributions can be inaccurate. For instance, they
are often too concentrated. In some cases this inaccuracy is not a problem, such as when
the goal is prediction or point estimation. But in genome-wide association studies accu-
rate computation of posterior probabilities is important because reports of new genetic
associations for disease may lead to substantial investment in follow-up studies, and so
they are received with a high level of scrutiny. For this reason, we focus on assessing the
accuracy of the variational approximation. To be clear, we are concerned with accuracy
of the approximate computations, not accuracy of the predictions. In our motivating
problem, most genetic loci will be unlinked because they are on separate chromosomes,
or they will be weakly linked because of recombination. Therefore, Xi and Xj will be
nearly independent for most pairs i and j. (For our choice of prior, independence of Xi

and Xj implies near independence of their effects on Y under the posterior, as we explain
below.) In this case, the variational approximation recovers accurate posterior inclu-
sion probabilities and other quantities of interest. In situations where the conditional
independence assumption is violated, we would not expect accurate approximations of
the posterior inclusion probabilities. And yet, we show that the variational method can
provide useful inferences in these cases—including accurate posterior distributions of
the hyperparameters—even when the posterior inclusion probabilities are incorrect.

Our method builds on a variational approximation recently developed in the same
context (Logsdon et al. 2010). (It is also closely related to the approximating distribu-
tion developed for independent factor analysis in Attias 1999.) The principal difference
between our method and theirs is that their method imposes independence assumptions
on the hyperparameters, whereas ours does not. Instead, we use importance sampling
to compute the posterior distribution of the hyperparameters. Since these additional
independence assumptions do not hold in general, avoiding them seems preferable. In
addition, there are some differences in our model and priors; for example, Logsdon
et al. (2010) have separate prior distributions for positive and negative effects, whereas
we do not. Most importantly, the emphasis of our paper is very different: we focus
on the accuracy of the variational approximation compared to exact or MCMC-based
calculations.

To validate the variational approximation, we present two simulation studies (Sec. 5):
an idealized simulation in which all variables are independent, and a more realistic case
study in which many variables are strongly correlated. These simulation studies are
small enough that we can assess the accuracy of our answers by comparing them to
Monte Carlo computations. We also illustrate the features (and possible issues) of the
variational approximation with a small example in Sec. 4.
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Informed by the results of our simulation studies, in Sec. 6 we demonstrate the use
of our variational inference procedure in a case-control study to identify genetic factors
that contribute to a complex human disease. We complete the full analysis of ~ 400, 000
genetic variants and ~ 5, 000 samples in hours, an analysis that might otherwise take
days or weeks by simulating a Markov chain.

In Sec. 2, we describe the hierarchical model for variable selection, assuming a linear
model for Y . In Sec. 3, we present the technical details of our inference procedure for
Bayesian variable selection. For binary outcomes in the case-control study, we describe
an extension to our inference method, the details of which are given in the appendix.

2 Bayesian variable selection: background and notation

There are many possible approaches to Bayesian variable selection; see O’Hara and Sil-
lanpäa (2009) for a recent review. The focus of this paper is an approach based on a
sparse (“spike and slab”) prior for the coefficients of the linear regression. This is one of
the most widely used approaches to Bayesian variable selection in linear regression. The
sparsity of the prior has a particular appeal for genetic association studies where most
genetic variants have no effect on the outcome, or an effect that is indistinguishable
from zero, even in large samples. The variational inference procedure we describe does
not exploit the sparsity of the prior, so it may be possible to extend it to non-sparse
priors that induce shrinkage in the regression coefficients, including normal-gamma pri-
ors (Griffin and Brown 2010) and the Bayesian Lasso (Park and Casella 2008), but
investigating this question lies outside the scope of this paper.

Following standard practice, we model the variable of interest Y as a linear combi-
nation of the candidate predictors X = (X1, . . . , Xp)T plus residual noise ε ∼ N(0, σ2):

Y = β0 +
p∑

k=1

Xkβk + ε. (1)

The variable selection problem can be viewed as deciding which of the coefficients β =
(β1, . . . , βp)T are equal to zero. We use binary variables γ = (γ1, . . . , γp)T to indicate
whether or not each variable is included in the model; if γk = 0, then βk = 0 with
probability 1. Pursuing a Bayesian approach to variable selection, we assign priors to
the indicator variables γ and coefficients β, then compute posterior probabilities by
averaging over choices of β and γ, and any additional model parameters, such as σ2.

In our problem formulation, the data consist of an n × p matrix X of observations
on the independent variables X, and a vector y = (y1, . . . , yn)T of observed values of Y .
We account for an intercept β0 in the linear model (1) by centering y and the columns
of X so that they each have a mean of zero. This is equivalent to integrating out the
intercept with respect to an improper, uniform prior (Chipman, George, and McCulloch
2001).2 The extension to binary labels Y ∈ {0, 1}, which is needed for the case-control
study of Sec. 6, is covered in the appendix.

2In general, one must be careful with the use of improper priors in variable selection (Clyde and

~�
~�
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There are many ways to specify a prior on subsets. For simplicity, we assume an
exchangeable prior, and treat indicator variables γ as Bernoulli random trials governed
by common success rate p(γk = 1) = π. This is the “spike and slab” prior (Mitchell
and Beauchamp 1988), in which βk is drawn from the “slab” density with probability
π and, with probability 1 − π, βk equals zero (the “spike”). We take the slab density
to be normal with zero mean and variance σ2σ2

β . In many applications π will be small,
reflecting a low proportion of variables with nonzero coefficients.

Statisticians may have good reasons to prefer other priors for β and γ, and our varia-
tional approximation could easily accommodate other priors, including nonexchangeable
priors for γ, and the conventional g-prior for β (Liang et al. 2008; Zellner 1986). We
discuss this point below.

Since results can be sensitive to the choice of hyperparameters θ = (σ2, σ2
β , π), we

estimate θ from the data by introducing a prior on θ, and integrating over values of
θ. We do not assume a specific form for the prior on θ—one feature of our variational
method is that it works with any prior on the hyperparameters. We defer the choice of
prior to the experiments (see Sections 5 and 6).

The inference problem is to compute posterior probabilities, or expected values with
respect to the posterior. For example, the posterior probability that variable Xk is
included in the linear model of Y is

PIP(k) ≡ p(γk = 1 |X, y) =

∑
γ−k

∫∫
p(y, β, γk = 1, γ−k |X, θ) p(θ) dβ dθ∑

γ

∫∫
p(y, β, γ |X, θ) p(θ) dβ dθ

, (2)

where γ−k is an assignment to all the indicator variables except γk. Since we refer to
this probability often, we abbreviate it as PIP, for “posterior inclusion probability.” The
joint probability of y, β and γ given X and θ is

p(y, β, γ |X, θ) = p(y |X, β, σ2)
p∏

k=1

p(βk | γk, σ2, σ2
β)

p∏

k=1

p(γk |π). (3)

The posterior inclusion probability contains a sum over 2p possible models γ, an integral
of high dimension over the nonzero coefficients β, and an additional integral over the
hyperparameters θ. MCMC methods approximate the intractable sums and integrals
by implementing Metropolis-Hastings moves that explore models with strong support
under the posterior. The challenge lies in designing a Markov chain that explores the
model space efficiently, and a variety of ways to deal with this issue have been suggested;
see Bottolo and Richardson (2010), Clyde et al. (2011), and Dellaportas et al. (2002)
for overviews. We investigate an alternative approach using variational methods.

George 2004). However, in this case the improper priors we use for β0, and for σ2 later, result in
well-defined Bayes factors and posterior probabilities (Servin and Stephens 2007).
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• Inputs: X, y, θ(1), . . . , θ(N), p̃(θ(1)), . . . , p̃(θ(N)).
• Outputs: α̂, µ̂, w(θ(1)), . . . , w(θ(N)).
• Choose α(init) and µ(init).
• for i = 1, . . . , N (outer loop)

- Set α = α(init) and µ = µ(init).
- Set θ = θ(i).
- Solve for s2; see (8).
- Repeat until convergence (inner loop)

1. Choose k ∈ {1, . . . , p}.
2. Update µk according to (9).
3. Update αk according to (10).

- Set Z to the lower bound on p(y |X, θ); see (14).
- Compute unnormalized importance weight:

set w(θ(i)) = Z/p̃(θ(i)).
- Set α(i) = α and µ(i) = µ.

• Compute normalized importance weights ŵ(θ(i)).
• Average over hyperparameters:

- set α̂ = ŵ(θ(1)) α(1) + · · ·+ ŵ(θ(N))α(N).
- set µ̂ = ŵ(θ(1))µ(1) + · · ·+ ŵ(θ(N)) µ(N).

Figure 1: Outline of inference procedure for Bayesian variable selection. The input
arguments are the samples (X, y), and the hyperparameter values θ(1), . . . , θ(N) drawn
from importance sampling distribution p̃(θ). The outputs are normalized importance
weights ŵ(θ(i)) ≈ p(θ(i) |X, y), and posterior probabilities α̂k ≈ PIP(k) and mean
additive effects µ̂ ≈ E[βk | γk = 1] averaged over settings of the hyperparameters. In
practice, we run a separate optimization to choose α(init) and µ(init). This is done to
address convergence of the inner loop to local maxima (see Sec. 3.2).

3 Variational inference

We begin by decomposing the posterior inclusion probabilities as

PIP(k) =
∫

p(γk = 1 |X, y, θ) p(θ |X, y) dθ. (4)

There are two components to our our inference strategy. One component approximates
posterior probabilities p(γk = 1 |X, y, θ) by minimizing the Kullback-Leibler divergence
(Cover and Thomas 2006) between an approximating distribution on β, γ and the pos-
terior of β, γ given θ. The second component estimates p(θ |X, y) by importance sam-
pling, using the variational solution from the first component to compute the importance
weights. The final inference procedure is shown in Fig. 1: the first component is the
inner loop, and the second component is the outer loop of the algorithm.
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3.1 Posterior inclusion probabilities given hyperparameters

The inner loop searches for a distribution q(β, γ) that provides a good approximation
to the posterior f(β, γ) = p(β, γ |X, y, θ). This is accomplished by minimizing the
Kullback-Leibler divergence

D(q ‖ f) =
∫

q(β, γ) log
{
q(β, γ)/f(β, γ)

}
dβ dγ. (5)

We restrict q(β, γ) to be of the form

q(β, γ; φ) =
p∏

k=1

q(βk, γk;φk). (6)

where φ = (φ1, . . . , φp) are free parameters, and the individual factors have the form

q(βk, γk; φk) =
{

αkN(βk |µk, s2
k) if γk = 1;

(1− αk) δ0(βk) otherwise,
(7)

where δ0( · ) is the delta mass (or “spike”) at zero, and φk = (αk, µk, s2
k). With proba-

bility αk, the additive effect βk is normal with mean µk and variance s2
k (the “slab”),

and with probability 1− αk, the variable has no effect on Y .

This “fully-factorized” approximating distribution was first suggested by Logsdon
et al. (2010), and Attias (1999) proposed it for a related model. It can be motivated by
the observation that, under the priors we adopt here, the posterior of β and γ will be
of this form when XT X is diagonal. Of course, it is unreasonable to expect that each
off-diagonal entry (XT X)jk is exactly zero. But if variables Xj and Xk are independent,
and if the expected value of Xj and Xk is zero—which is guaranteed once we center
the columns of X—then (XT X)jk will be close to zero, and βj and βk will be nearly
independent a posteriori given the additive effects of the remaining variables. Therefore,
we expect that (6) will be a good approximation when the variables are independent. It
will also be a good approximation when the posterior is concentrated at a single location.
Note that these arguments would be equally valid if we instead used the g-prior for β.

Finding the best fully-factorized distribution q(β, γ;φ) amounts to finding the free
parameters φ that make the Kullback-Leibler divergence as small as possible. The
coordinate descent updates for this optimization problem can be obtained by taking
partial derivatives of the Kullback-Leibler divergence, setting the partial derivatives to
zero, and solving for the parameters αk, µk and s2

k. This yields coordinate updates

Var[βk | γk = 1] ≈ s2
k =

σ2

(XT X)kk + 1/σ2
β

(8)

E[βk | γk = 1] ≈ µk =
s2

k

σ2

(
(XT y)k −

∑

j 6=k

(XT X)jkαjµj

)
(9)

p(γk = 1 |X, y, θ)
p(γk = 0 |X, y, θ)

≈ αk

1− αk
=

π

1− π
× sk

σβσ
× eSSRk/2, (10)
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where (XT y)k is the kth entry of vector XT y, and SSRk = µ2
k/s2

k. Note that αk, µk

and s2
k all implicitly depend on the value of θ. The inner loop of the inference algorithm

repeatedly applies updates (8-10) until a stationary point is reached.

Expressions (8) and (10) may look familiar: (8) is the posterior variance of the
additive effect βk for the single-variable linear model Y = Xkβk + ε; and (10) is the
posterior odds (Bayes factor × prior odds) for the alternative hypothesis (βk 6= 0) over
the null hypothesis (βk = 0), assuming that µk is the correct posterior mean, in which
case SSRk is the reduction in sum of squares due to regression on Xk.

Likewise, (9) is also easy to explain: if we ignore all terms involving variables j
other than variable k, it is the posterior expected value of βk for the single-variable
linear model Y = Xkβk + ε. The (XT X)jkαjµj terms correct for correlations among
variables not included in the single-variable linear model. For example, when another
variable Xj is positively correlated with Xk, and we already know it has an effect on
Y in the same direction as Xk, equation (9) dampens the effect of Xk on Y . This
correction also accounts for the probability that variable Xj is included in the model.

One final comment on the first part of our inference procedure: the algorithm as
we present it in Fig. 1 does not scale linearly with the number of variables. The most
expensive part is the update for µk. The trick to implementing inner loop iterations
with linear complexity is to keep track of vector Xr, where r is a column vector with
entries rk = αkµk, and to update this vector after each update of µk and αk.

3.2 Posterior of hyperparameters

We use importance sampling to integrate over the hyperparameters. We replace integral
(4) with importance sampling estimate

PIP(k) ≈
∑N

i=1 p(γk = 1 |X, y, θ(i))w(θ(i))∑N
i=1 w(θ(i))

, (11)

where w(θ) is the unnormalized importance weight for θ. Other Monte Carlo methods
such as MCMC could also be used to integrate over the hyperparameters, but we opt for
importance sampling because it is a simple and effective way to estimate an integral of
low dimension, and because we can obtain a reasonably accurate estimate with a small
number of samples, provided they are chosen well. This is an important consideration
because a single iteration of importance sampling involves optimizing a variational lower
bound (as we explain below) and this can take a long time to complete for large problems.
In our analyses, we use a small number of samples of θ, between 100 and 1000.

By replacing integral (4) with the Monte Carlo estimate (11), we avoid having to
introduce additional variational approximations for the hyperparameters. The difficulty,
however, is that the importance weights are

w(θ) =
p(y |X, θ) p(θ)

p̃(θ)
, (12)
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where p̃(θ) is the importance sampling distribution; this expression contains a marginal
likelihood p(y |X, θ) which we know by now is difficult to compute. We take a variational-
based approach to approximating this importance weight.

Our approach is based on the previously established result that the marginal log-
likelihood of θ is bounded from below by

log p(y |X, θ) ≥ F (θ; φ) ≡ ∫∫
q(β, γ; φ) log

{
p(y, β, γ |X, θ)

q(β, γ;φ)

}
dβ dγ. (13)

For our choice of approximating distribution, this lower bound has analytical expression

F (θ;φ) = −n

2
log(2πσ2)− ‖y −Xr‖2

2σ2
− 1

2σ2

p∑

k=1

(XT X)kkVar[βk]

−
p∑

k=1

αk log
(αk

π

)
−

p∑

k=1

(1− αk) log
(1− αk

1− π

)

+
p∑

k=1

αk

2

[
1 + log

(
s2

k

σ2
βσ2

)
− s2

k + µ2
k

σ2
βσ2

]
, (14)

where ‖ · ‖ is the Euclidean norm, and Var[βk] = αk(s2
k +µ2

k)− (αkµk)2 is the variance
of kth additive effect under the approximating distribution. This bound is valid for
any θ and φ. See Jordan et al. (1999) for a derivation of this bound using Jensen’s
inequality.

It is easy to see that the minimizer of the Kullback-Leibler divergence for a given
hyperparameter setting θ, which we denote by φ(θ), also maximizes the lower bound
F (θ; φ). In other words, φ(θ) provides the tightest lower bound—hence the best ap-
proximation to the marginal likelihood—within a particular family of approximating
distributions. Motivated by this, others (e.g. Blei et al. 2003; Khan et al. 2010) have
proposed to replace the intractable maximum likelihood estimator for θ with a θ that
maximizes the best lower bound, F (θ; φ(θ)). Likewise, we propose to substitute the
marginal log-likelihood appearing in the importance weight (12) with its corresponding
best lower bound, F (θ, φ(θ)).3

In general, there is no reason to believe that F (θ;φ(θ)) is a good substitute for
the marginal log-likelihood. In fact, it is often a poor substitute, as we show in the
examples below. However, all that is needed for our inference procedure to work well is
that F (θ;φ(θ)) have a similar shape to log p(y |X, θ) whenever the marginal likelihood
is relatively large. By the same logic, computing θ that maximizes F (θ; φ(θ)) is sensible
so long as the maximum of the lower bound is close to the maximum likelihood estimate.

3In our experiments, we choose samples θ(i) on a fixed grid to reduce the variance in the Monte
Carlo estimates. This is feasible since we only have 2 or 3 hyperparameters. In this case, our inference
strategy resembles “grid-based” variational inference (Cseke and Heskes 2011; Ormerod 2011), but
there is an important difference: we treat θ differently from the other variables (β, γ) because we never
use variational inference to compute an integral over θ. Our method is more accurate, but more costly,
because we need to re-run the variational inference portion (the “inner loop”) separately for each θ(i).
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The problem is that there are no theoretical results guaranteeing the accuracy of es-
timates based on the lower bound (13), and in most applications it seems to be simply
taken on faith. In this paper, we assess the accuracy of the approximation empiri-
cally by comparing variational estimates to exact calculations (or MCMC calculations
where exact calculations are infeasible). In our experiments, the resulting approximate
importance weights are often very accurate.

We run the coordinate ascent updates separately for each setting of the hyperparam-
eters, with common starting point (α(init), µ(init)). Since the coordinate ascent updates
are only guaranteed to converge to a local minimum of the Kullback-Leibler divergence,
the choice of starting point can affect the quality of the approximation, particularly
when variables are correlated. To address sensitivity of the approximation to local
maxima, we select a common starting point by first running the inner loop for each θ(i),
with random initializations for α and µ, then we assign (α(init), µ(init)) to the solution
(α(i), µ(i)) from the hyperparameter setting θ(i) with the largest marginal likelihood.

4 An illustration

In this section, we compare variational estimates of posterior distributions with exact
calculations in a small variable selection problem with two candidate predictors.

The problem setup is as follows. We take Y to be a linear combination of the
variables, Y = β0 + X1β1 + X2β2 + ε, with random error ε drawn from the standard
normal. If variable Xk is included in the model, then βk 6= 0. Since there are only
four possible models or combinations of included variables to choose from, it is easy
to compute posterior probabilities of all models γ ∈ {0, 1} × {0, 1}. Each posterior
probability p(γ |X, y) is computed by averaging over nonzero coefficients β. We place a
normal prior on β1 | γ1 = 1 and β2 | γ2 = 1 with mean zero and standard deviation 0.1,
and an improper, uniform prior on intercept β0. Each γk is i.i.d. Bernoulli with success
rate π. The data are n = 1000 samples of X1, X2 and Y .

To make this example more interesting, we treat π as unknown. The posterior
probability of any γ is then averaged over choices of π. We take π to be Beta(0.2, 2).
Note that this prior favours sparse models; it says that, in expectation, only 1 out of 10
variables are included in the model.

Our first example, Example A in Fig. 2, is designed to illustrate a setting where the
variational approximation should perform well in all aspects, because the two variables
X1 and X2 are only weakly correlated, with correlation coefficient r = 0.2. The first
variable has a modest effect on Y ; the coefficients used to simulate the samples y are
(β0, β1, β2) = (0, 0.1, 0). Observe that the posterior inclusion probabilities shown in
Fig. 2 correctly favour X1 as a predictor of Y . Since the variables are weakly corre-
lated, we have reason to expect that the fully-factorized distribution will be a good
fit to the posterior. Indeed, this is what we observe: the posterior probabilities and
marginal likelihoods under the variational approximation (in gray) all closely match
exact calculations (in black).
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Figure 2: Two toy examples illustrating some of the features of the variational approx-
imation. In bar plots, variational estimates are gray and exact computations are black.
Note that the scale of the marginal likelihoods does not matter, only their relative values
do. In the bottom row, the prior on π is drawn in a stippled pattern. See the text for
details about each example.

The second example (Example B) is designed to illustrate a less ideal situation for
the variational approach where the variables are more strongly correlated; r = 0.8. (The
true coefficients remain the same.) The posterior shown in Fig. 2 still favours X1 over
X2, but with less certainty because of the higher correlation. Due to the correlation
between X1 and X2, we no longer expect that the fully-factorized distribution will cor-
rectly capture the posterior. This suspicion is correct: the variational approximation
overestimates the posterior probability that X1 is included in the model, and underes-
timates the posterior inclusion probability for X2. The tendency to concentrate more
mass on a single hypothesis, or to artificially lower the variance in the posterior by overly
favouring the winner, is typical behaviour of mean field approximations (MacKay 2003;
Turner et al. 2008). The fully-factorized approximation cannot capture the posterior
distribution over models because, for example, p(γ1 = 1, γ2 = 1 |X, y) = 0.16 cannot be
written as the product of p(γ1 = 1 |X, y) = 0.61 and p(γ2 = 1 |X, y) = 0.42.
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Figure 3: Another toy example demonstrating some features of the variational approx-
imation. In bar plots, variational estimates are shown in gray, and exact computations
are black. The left and right columns show the two variational solutions. (Exact com-
putations remain the same in both columns.) In the bottom row, the prior on π is
drawn in a stippled pattern.

Despite this limitation, the variational approximation still provides a good estimate
for the posterior of π (bottom row of Fig. 2). This is observed even though the variational
lower bound F (π; φ(π)) (third row) is a poor approximation to the marginal likelihood
p(y |X, π). But since F (π;φ(π)) has a similar shape to the marginal likelihood, we
obtain the correct posterior p(π |X, y) after normalizing. Consistent with this result,
the variational approximation also provides an accurate posterior distribution for the
number of variables included in the model.

The third example, Example C in Fig. 3, is intended to illustrate the behaviour of
the variational approximation when the two variables are almost completely correlated
(r = 0.99), in which case it is difficult to distinguish the first variable (which affects
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Y ) from the second (which does not). Indeed, the posterior inclusion probabilities
are 0.62 and 0.60. In this case, there are two local maxima for the free parameters φ
which produce very different approximations to the posterior inclusion probabilities, and
both these approximations yield poor estimates of the posterior inclusion probabilities.
Nonetheless, as in Example B, both solutions provide accurate posterior distributions
for π and the number of variables included (the largest error in both instances is 0.06),
despite the fact that the variational lower bound drastically underestimates the marginal
likelihood.

Of course, for most larger problems our variational approximation will be inadequate
for capturing complicated dependencies among the variables, and the estimates of the
posterior will suffer accordingly. When a more precise answer is needed, MCMC may
be the better, if more costly, option because it (eventually) averages over all credible
models. The goal of these examples was to point out that the variational method can
often do a good job estimating some posterior quantities (such as π and the number
of included variables), even if it fails to capture the multi-modality of the posterior, by
choosing models that are reasonably representative of the full range of possibilities. If
accurate probabilities for individual variables are not critical, the variational method
can be an adequate and much less costly option.

5 Two simulation studies

Now we present two simulation studies to assess the accuracy of the variational approx-
imation for variable selection. The first experiment is an idealized genetic association
study with uncorrelated genetic factors. The second experiment represents a situation
in which we target a specific region of the genome, and we have sampled genetic variants
in that region. In the second case, many genetic factors are strongly correlated.

5.1 The ideal case

Earlier, we argued that the variational method should yield accurate posterior inclusion
probabilities when the variables are independent. The purpose of our first experiment
is to assess this claim. The variables for this experiment are modeled after genetic
variants—specifically, single-nucleotide polymorphisms (SNPs).

In a typical genome-wide association study, most genetic variants do not contribute
to changes in the quantitative trait Y , so the inferred β should be sparse. Moreover,
the accumulated effect of genetic factors usually only accounts for a modest portion of
variance in the trait. This can be due to a variety of reasons: we failed to measure
some of the variants that affect Y , such as structural variants; there are other factors,
such as environmental factors, that play a role in determining Y ; and perhaps there are
interactions among genetic factors that cannot be captured by a linear model.

To generate the genotype data X for our experiment, we start by selecting, for each
SNP k = 1, . . . , p, the frequency fk that its minor allele appears in the population. We
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E[log10 σ2] E[log10 σ2
β] E[log10π]

variational 0.954 −0.803 −1.86
MCMC 0.939 −0.860 −1.76

difference 0.015 0.057 −0.10

Table 1: Posterior means of log10 hyperparameters for a typical trial from the first
simulation study with independent SNPs. The top two rows show variational and
MCMC estimates of posterior expected values. The bottom row shows differences x̃−x,
where x is the MCMC estimate and x̃ is the variational approximation.

sample minor allele frequencies fk i.i.d. from the uniform distribution on [0.05, 0.5].
This is intended to mimic a genome-wide association study with “common” genetic
variants. (The distribution of minor allele frequencies is not uniform in some more
recent studies because genotyping platforms now have better coverage of rare variants.)
Then for each SNP k and individual i we simulate the genotype xik independently from
the binomial for two trials (corresponding to the two alleles) and with success rate fk.

We then generate genotypes y = (y1, . . . , yn)T for n individuals. To do so, we first
select m SNPs uniformly at random to have non-zero coefficients βk, and sample these
coefficients i.i.d. from the standard normal. Then we set yi =

∑p
k=1 xikβk + εi, where

the error terms εi are i.i.d from N(0, σ2).

We repeat this process of generating SNPs and samples 50 times to generate data
sets for 50 separate experimental trials. For all trials, we set n = 500, p = 1000,
m = 20 and σ = 3. While these settings lead to data sets that are much smaller than
real genome-wide association studies, they capture some of their key characteristics—
the true model is sparse, genetic factors explain on average about half the variance
in Y —while producing data sets small enough that we can run many simulations in a
reasonable amount of time.

We implement Bayesian variable selection as it was described in Sec. 2. We follow a
hierarchical Bayesian strategy, specifying priors for the hyperparameters θ = (σ2, σ2

β , π),
and estimating their posterior distribution from the data. We adopt the standard prior
p(σ2) ∝ 1/σ2 for the residual variance parameter (Berger 1985), and a Beta(0.02, 1)
prior for π. The prior for π has mean equal to 20/1000, which is the true proportion of
variables that affect Y . However, the prior is diffuse, and is skewed toward small models;
for example, the prior probability that more than one variable is included in the model
is 0.07. This prior may not be appropriate for general application to genetic association
studies, but we use it here to facilitate implementation of the MCMC method, as the
beta prior allows us to analytically integrate out π. In our case study (Sec. 6), we switch
to a normal prior on log π

1−π .

For the prior variance parameter σ2
β , we adopt a prior related to the one recom-

mended by Guan and Stephens (2011). Based on arguments given in Guan and Stephens
(2011), it is appropriate to place a prior on the expected proportion of variance explained
r̂2 = ŝ2

z/(1 + ŝ2
z), where ŝ2

z = πσ2
β

∑p
k=1 ŝ2

k, and where ŝ2
k is the sample variance of the
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Figure 4: Posterior of hyperparameters for several trials in idealized simulation study
with independent SNPs. Variational estimates are gray, and MCMC computations are
black. Each row corresponds a single trial. The top row is a trial demonstrating typical
behaviour. The other rows are outliers; specifically, trials exhibiting largest differences
between variational and MCMC estimates of posterior means of the hyperparameters.

kth variable. (Note that ŝ2
z times the scale parameter σ2 is the prior expected value of

the sample variance of XT β.) This leads to a diffuse (heavy-tailed) prior on σ2
β that

depends on π. While the prior dependence of σ2
β and π is useful, for convenience of

implementing MCMC we avoid this dependence by replacing π with a constant, 0.02,
that represents its true value.

Our variational inference method requires specification of an importance sampling
distribution on θ. We take p̃(θ) to be uniform on (σ2, σ2

β , log10π), and we set the
range of the uniform distribution to be sufficiently large to include all values with
appreciable posterior probability. (Defining p̃(θ) on a wider range would not change
the final results, and would increase the running time of the experiments.) To reduce
the variance of importance sampling, rather than actually sampling from the uniform
proposal distribution, we use a deterministic, regular grid of values for θ(i). Values of
σ2, σ2

β and log10π are taken at regular intervals of 1, 0.025 and 0.25, respectively. These
intervals were chosen after some trial and error to produce approximately the same
resolution of the posterior distribution in each dimension.
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E[log10σ
2] E[log10σ

2
β] E[log10π]

variational 0.98± 0.06 −0.89± 0.31 −1.85± 0.27
MCMC 0.96± 0.07 −0.93± 0.36 −1.77± 0.33

mean diff. 0.013 0.042 −0.087
mean abs. diff. 0.013 0.048 0.089

Table 2: Posterior mean estimates of log10 hyperparameters from the first simulation
study, averaged over all 50 trials. Standard error (±) is two times the sample deviation
over the 50 trials. The top two rows show variational and MCMC estimates of the
posterior expected values. The third and fourth rows show the mean of differences
x̃−x, and the mean of absolute differences |x̃−x|, where x is the MCMC estimate and
x̃ is the variational approximation.

To assess the accuracy of the inferences provided by the variational approximation,
we compare the results from the variational method to Monte Carlo estimates of pos-
terior distributions obtained from running an MCMC algorithm for 100,000 iterations
(see the appendix for details). We cannot, of course, guarantee that 100,000 iterations
of MCMC, or any finite number of iterations, is sufficient to recover accurate posterior
quantities, but since we cannot calculate exact posterior probabilities we must tolerate
some degree of imprecision in our evaluation.

Table 1 compares variational and MCMC estimates of the hyperparameters from a
typical trial. For this trial, the variational solution closely matches Monte Carlo compu-
tations. The top row of Fig. 4 shows the posterior distribution of the hyperparameters
produced by the variational (gray) and MCMC (black) methods in the same trial.

The main result of the first experiment is contained in Table 2. This table shows
that the relative differences between variational and MCMC calculations are small, as
predicted. These estimates closely correspond to the parameters log10 σ2 = log10 9 ≈
0.95, log10 σ2

β = log10(1/9) ≈ −0.95 and log10π = log10 0.02 ≈ −1.7 used to simulate
the data. It is still possible that closer agreement could be achieved by increasing the
number of samples in the importance sampling part of the variational algorithm.

Since the variational method does not make assumptions about the posterior distri-
bution of the hyperparameters, it is able to capture posterior correlations among the
hyperparameters. For example, we expect that σ2

β and π are inversely correlated a pos-

teriori; a smaller σ2
β corresponds to smaller effect sizes, which typically leads to more

variables being included in the model, and a larger posterior estimate of π. Indeed,
variational estimates of the posterior correlation coefficient of log10 σ2

β and log10 π are
−0.37±0.14 over the 50 trials, and MCMC estimates for the same trials are −0.46±0.16.

In addition to close agreement in point estimates of the hyperparameters, as Table
2 shows, posterior distributions also closely agree between the two inference methods.
The bottom three rows of Fig. 4 show posterior distributions of the hyperparameters
from trials that exhibit largest differences in the posterior mean estimates. Even in
these worst cases, the variational approximation captures the correct overall shape and
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Figure 5: Scatter plot of posterior inclusion probabilities (PIPs) from the first simulation
study. Each point is a posterior inclusion probability for one SNP in one trial. The
horizontal axis is the MCMC estimate of the PIP, and the vertical axis is the variational
estimate. Since there are 1000 SNPs in each simulation, and a total of 50 simulations,
this plot has 50,000 points.

location, regardless of whether the posterior mass is diffuse or concentrated.

Not only do hyperparameter estimates agree, but Fig. 5 shows that the two methods
also largely agree on posterior inclusion probabilities for the SNPs, particularly for the
SNPs with high PIPs, which are the SNPs of greatest interest. If one were to select
SNPs with PIPs at a certain threshold, the two methods would exhibit almost identical
rates of false positives and false negatives (not shown).

Now that we’ve checked the accuracy of the variational method in the ideal setting
when the variables are independent, next we investigate the accuracy of the variational
method in the more realistic setting when many variables are strongly correlated.

5.2 “Targeted Region” study

Our second simulation study mimics a scenario in which a region of the genome has
been identified from previous studies, and the goal is to identify genetic variants within
this region that are relevant to the quantitative trait Y . The trait in this experiment is
simulated, but we use actual samples of genetic variants, so this second experiment will
better capture the patterns of correlations observed in genetic association studies. We
assess the accuracy of the variational approximation in this setting.

For our simulations, we use SNPs from the ~ 10 megabase (Mb) region surrounding

~�
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E[log10 σ2] E[log10 σ2
β] E[log10π]

variational 0.979 −0.928 −1.76
MCMC 0.972 −0.988 −1.69

difference 0.007 0.060 −0.07

Table 3: Posterior means of log10 hyperparameters for a typical trial in the “targeted
region” simulation. See Table 1 for the legend.
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Figure 6: Results for a single trial, chosen to illustrate behaviour typical of the vari-
ational method in the “targeted region” simulation study. Top panel: posterior of
hyperparameters. Variational estimates are in gray, MCMC computations are in black.
Middle and bottom panels: Posterior inclusion probabilities (PIPs) for all SNPs in the
targeted region. SNPs are ordered by their physical location on the chromosome. Black
triangles mark the location of causal SNPs (SNPs that affect Y ). The region marked
with an asterisk (∗) is shown in Fig. 7.

gene IL27. Genotypes of the 1037 SNPs lying in this region are taken from the cases
and controls of the Wellcome Trust Case Control Consortium (2007) type 1 diabetes
study. As before, we run 50 trials, with each data set of n = 2000 samples obtained
by subsampling without replacement from the total of 4901 individuals. We use this
data to simulate an artificial quantitative trait Y that is affected by 20 randomly-chosen
SNPs, exactly as in the first simulation study. The variable selection model, priors, and
implementation of the variational inference method remain unchanged from the first
simulation study.



P. Carbonetto and M. Stephens 91

P
IP

0

0.5

1

Figure 7: A closer look at the posterior inclusion probabilities in the region marked
by the asterisk (∗) in Fig. 6. Variational and MCMC estimates are gray and black,
respectively. Triangles mark the location of causal SNPs. Below the PIPs, the square
of the correlation coefficient (r2) is shown for every pair of SNPs; black indicates two
SNPs are almost perfectly correlated, and white indicates no correlation.

First we examine results from a typical trial. Variational and MCMC estimates of
the hyperparameters are given in Table 3, and estimates of the posterior distribution
are shown in the top panel of Fig. 6. Remarkably, the accuracy of the variational
approximation in this example is within range of the errors observed in the independent
variables case; compare the differences reported in Table 3 to those in Table 2.

For the same trial, the middle and bottom rows of Fig. 6 show posterior inclusion
probabilities (PIPs) for all SNPs in the targeted region, ordered by their location along
the chromosome. Black triangles mark the locations of SNPs that affect Y (the “causal
SNPs”). In this example, every SNP with a large variational PIP (bottom row) is inside
a block of SNPs such that within this block there is a high probability, according to
MCMC estimates, that at least one of the SNPs is included in the model. But within
each of these blocks the variational approximation fails to capture uncertainty in the
location of the selected SNP, akin to what we witnessed in Examples B and C in Sec. 4.

Consider, for example, the region indicated by the asterisk (refer to Figures 6 and 7).
The SNP marked by the left-most black triangle in Fig. 7 is included in the model with
high posterior probability (PIP = 0.89), whereas the variational approximation selects
a neighbouring SNP with high probability (PIP = 1.00). The variational approximation
has difficulty here with the strong correlation (r = 0.95) between the the two SNPs. On
the right-hand side of Fig. 7, we are uncertain about the location of the causal variant
because it is inside a block of highly correlated SNPs. As expected, the variational
approximation fails to capture this uncertainty. But within this block of correlated
SNPs, the variational approximation correctly calculates the number of SNPs included
in the model; variational and MCMC estimates of the expected number of included
SNPs are 1.08 and 1.19, respectively. Remember we are concerned with accuracy of
computations, not accuracy of inferences, so the fact that variational approximation
fails to select the causal SNP in each of these instances is not relevant.
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E[log10σ
2] E[log10σ

2
β] E[log10π]

variational 0.96± 0.03 −0.92± 0.29 −1.77± 0.17
MCMC 0.95± 0.03 −0.95± 0.29 −1.72± 0.17

mean diff. 0.007 0.027 −0.050
mean abs diff 0.009 0.053 0.056

Table 4: Posterior mean of log10 hyperparameters according to the variational and
MCMC methods, averaged over 50 trials in the “targeted region” study. Standard
error (±) is two times the sample deviation over the 50 trials. The top two rows show
variational and MCMC estimates of the posterior expected values. The third and fourth
rows show the mean of differences x̃ − x, and the mean of absolute differences |x̃ − x|,
where x is the MCMC estimate and x̃ is the variational approximation.
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Figure 8: Posterior of log10 hyperparameters for several trials from the “targeted region”
study. Variational estimates are gray, and MCMC computations are black. Each row
corresponds to a single trial. Trials shown here were chosen because they exhibit the
largest discrepancies between variational and MCMC estimates of the posterior mean
of the hyperparameters.

Note that the posterior inclusion probabilities shown in Figures 6 and 7 correspond
to one of several possible variational approximations; different starting points for the
free parameters can produce slightly different answers, which correspond to different
local minima of the Kullback-Leibler divergence.

In Table 4, we show results for all 50 simulations of the “targeted region” study.
Variational estimates of E[log10σ

2] and E[log10π] appear to be reasonably accurate and,
in fact, they are no worse than variational estimates in the setting with independent
variables; compare these numbers with those in Table 2. This result makes sense in
light of our discussion from Sec. 4, where we pointed out that the posterior of π will
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be accurate so long as the variational approximation recovers the correct number of
selected variables. Admittedly, the accuracy of the variational computations in this
experiment may be attributed in part to an increase in the number of samples from
n = 500 to n = 2000, as variational estimates tend to be more accurate when the
posterior mass is concentrated. (If we kept n the same for this experiment, the posterior
would be more diffuse because we have less information from correlated variables.) Fig. 8
shows posterior distributions of the hyperparameters from trials that showed the largest
discrepancy between variational and MCMC estimates of the posterior means.

In summary, the main qualitative difference between the MCMC and variational
inferences is that, when multiple correlated variables are associated with the outcome
Y , the MCMC solution appropriately disperses the posterior probability across the cor-
related variables so that each one has a small PIP. In contrast, the variational approx-
imation tends to concentrate the posterior probability onto a single variable, resulting
in one large PIP, while the rest of the PIPs are near zero. This behaviour, which is
also apparent in the work of Logsdon et al. (2010), can be viewed as a natural exten-
sion of the behaviour we observed in the toy examples (Sec. 4). In our simulations,
MCMC estimates of PIPs tend to better reflect uncertainty in which variables should
be included and, we presume, are closer to exact PIPs. Nonetheless, once one is aware
of this feature of the variational approximation, the PIPs produced by the variational
inference procedure can be useful because they correctly point to groups of correlated
variables. For a genetic association study, this means that variational estimates of PIPs
will single out the correct genomic region, if not the correct individual variant.

6 Case study: discovery of genome-wide associations for
Crohn’s disease

Now that we have assessed the accuracy of the variational approximation in simulations
with independent and dependent variables, we illustrate its application to a large-scale
variable selection problem with ~ 400, 000 variables.

Genetic variants in genome-wide association studies are typically analyzed individ-
ually, ignoring correlations between variants. There are two reasons why it is beneficial
to pursue a Bayesian hierarchical approach and analyze variants jointly. First, small
genetic effects are sometimes easier to detect after accounting for factors that have a
relatively strong effect on Y . Second, the conclusions of a genome-wide association
study are influenced by our prior beliefs, and one way to improve objectivity is to infer
hyperparameters from joint analysis of the data. Variational inference has the poten-
tial to realize the advantages of the Bayesian approach, and at a substantially reduced
computational cost compared with MCMC inference. Here we compare analyses of a
genome-wide association study using variational and MCMC inference approaches.

Our example is a case-control study of Crohn’s disease, a common inflammatory
bowel disease known to have a complex genetic basis. Recent analyses of genome-
wide association studies have connected a large number of genetic variants to Crohn’s

~�
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disease (Barrett et al. 2008; Franke et al. 2010). Although the variants identified so
far account for only a portion of the variance in disease risk, many of these variants
are believed to play an important biological role in signaling pathways that regulate
responses to pathogens (Cho 2008). Our analysis is unlikely to offer new insights into
Crohn’s disease as findings have already been published based on the data we use here
(WTCCC 2007). Nonetheless, these data provide a useful case study for illustrating the
Bayesian hierarchical approach to analysis.

In this study, we have a total of p = 442, 001 genetic variants (specifically, SNPs)
on autosomal chromosomes. This is after applying quality control filters as described in
WTCCC (2007), and after removing SNPs that exhibit no variation. We estimate any
missing genotypes at these SNPs using the posterior mean minor allele count provided by
BIMBAM (Servin and Stephens 2007), using SNP data from the International HapMap
Consortium (2007).

The data from the genome-wide association study are the genotypes X and case-
control labels y from a cohort of n = 4686 individuals. The 1748 subjects who carry the
disease (“cases”) are labeled yi = 1, and the remaining 2938 disease-free subjects (“con-
trols”) are labeled yi = 0. More details on this data can be found in WTCCC (2007).

To model case-control status, we replace the linear model for Y with a logistic
regression. Under the logistic model, eβk is the “odds ratio” for locus k, the increase
or decrease in disease odds for each copy of the minor allele. Implementation details
of our variational method for the logistic model are given in the appendix. Otherwise,
we conduct our analysis using the variable selection model as it is described in Sec. 2.
Note that hyperparameter σ2 is not needed for case-control data.

Next we discuss the choice of prior on the hyperparameters θ = {σ2
β , π}. Since this

Crohn’s disease study contains strong evidence for genetic risk factors, sensitivity of
the final results to the prior on the hyperparameters is not a great concern here. But
generally speaking it is important to choose this prior carefully because the data from
a genetic association study may be only weakly informative.

Earlier, we expressed concern with the beta prior for π. Instead we adopt a normal
prior on logit10π = log10(

π
1−π ). We expect that only a small portion of the genetic

factors increase (or decrease) susceptibility to Crohn’s disease, so we set the prior mean
to −5. This corresponds to 1 selected variable for every 100,000 SNPs, or a total of 4
or 5 causal variants. We set the prior standard deviation to 0.6, so that 0 to 70 causal
variants are expected within the 95% prior credible interval.

We adopt a uniform prior on the proportion of variance explained, as we described
in Sec. 5.1, except that we do not replace π by a constant in the expression for σ̂2

z .
Therefore, σ2

β depends on π a priori.

We compute importance weights for r̂2 (the proportion of variance explained, as
defined in Sec. 5.1) and logit10π at regular intervals of 0.05 and 0.25, respectively.
Again, these intervals were chosen after some trial and error. We conduct importance
sampling on r̂2 rather than σ2

β because it is easier to choose a reasonable range of values
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Figure 9: Top two panels: posterior inclusion probabilities for all SNPs in the genome-
wide study of Crohn’s disease. SNPs are ordered by chromosome, then by position along
the chromosome. Autosomal chromosomes 1 through 22 are shown in alternating shades.
Gray regions are the strongest associations identified in the original study (Table 3 in
WTCCC 2007). Bottom two panels: sums of PIPs calculated over 200 kb segments.

for the proportion of variance explained.

We implemented our inference algorithm in MATLAB, and ran it on a machine with
a 2.5 GHz Intel Xeon CPU. On average, coordinate ascent updates of the inner loop
took 25 minutes to converge to a solution, though there was considerable variation in
run time; depending on the choice of hyperparameters, the inner loop took as little as
9 minutes or as much as an hour to complete. It took about a day to complete the full
variational inference procedure.

After running variational inference, we find that the posterior mean of σβ is 0.201,
with a posterior standard deviation of 0.05. The posterior mean of logit10π is −4.1, or



96 Scalable Variational Inference for Bayesian Variable Selection

sum of PIPs
chr pos. (Mb) MCMC Var. SNP PIP
1 67.3 1.001 1.015 rs11805303 1.000
2 233.8 0.985 1.001 rs10210302 1.000
5 40.3 2.598 1.301 rs17234657 1.000
6 32.7 0.950 0.508 rs9469220 0.489
9 114.4 0.937 0.045 rs4263839 0.026
10 64.0 1.016 1.008 rs10995271 0.984
10 101.1 1.015 0.965 rs7095491 0.963
14 96.4 0.911 0.071 rs11627513 0.068
16 49.3 2.050 1.013 rs17221417 1.000
18 12.7 0.723 0.991 rs2542151 0.990
21 39.2 0.940 0.345 rs2836753 0.321

Table 5: Regions of the genome with strong evidence of risk factors for Crohn’s disease.
Each row in the table is a 200 kb genomic segment for which the variational or MCMC
estimate of the expected number of included SNPs (“sum of PIPs”) exceeds 0.9. Rows
highlighted in gray are the strongest associations identified in the original study (Table
3 in WTCCC 2007). Columns from left to right are: (1) chromosome number; (2) po-
sition of the start of the segment in megabases; (3) MCMC estimate of sum of SNPs;
(4) variational estimate of sum of SNPs; (5) refSNP identifier for the SNP with the
largest PIP in the segment, according to the variational method; (6) PIP of this SNP.
All SNP information is based on human genome assembly 17 (NCBI build 35).

π ≈ 7/100, 000, with a posterior standard deviation of 0.2. This result suggests that,
on average, about 30 SNPs are useful for predicting an individual’s susceptibility to
Crohn’s disease, though the odds ratios eβk for many of these SNPs are close to one.

Ultimately, the aim of a genome-wide association study is to identify genetic variants
and regions of the genome that affect disease outcome. For the remainder of our analysis,
we focus on this aim. We compare the results from the variational method with findings
from an analysis of the same data using the MCMC method described in Guan and
Stephens (2011). (Results were kindly provided by Y. Guan; personal communication.)
Considering the size of the variable selection problem, we should not assume that MCMC
estimates are close to exact values.4

The top two panels in Fig. 9 show variational and MCMC estimates of the PIPs for
all SNPs. From these two plots it is apparent that some PIPs coincide, but many do
not; in other words, the two methods do not always agree on which SNPs might affect
susceptibility to Crohn’s disease. This is not surprising based our previous findings.
As we discussed, when multiple correlated SNPs in a region are associated with Y , the
variational approximation tends to select one of them and assign it a high PIP, whereas
the MCMC approach divides the posterior probability among several correlated SNPs.

4MCMC with parallel tempering would yield more accurate inferences (Bottolo and Richardson
2010), but this would increase the already high computational cost for this problem.
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Therefore, for a better comparison of the variational and MCMC methods, we ask
whether the methods identify the same regions of the genome instead of the same
SNPs. We divide the genome into 200 kilobase (kb) segments, in which each pair of
neighbouring segments overlaps by 100 kb. On average, a 200 kb segment contains 37
SNPs. For each segment, we compute the the sum of the posterior inclusion probabilities
or, equivalently, the expected number of SNPs associated with disease risk.

The bottom two panels in Fig. 9 show sums of PIPs across the genome. Table 5
lists all regions of the genome for which at least one of the two methods declares that
the region contains a risk factor for Crohn’s disease with high probability (the sum
of PIPs exceeds 0.9). This table does not show overlapping segments that share the
same association signal. As expected, Table 5 recapitulates the strongest associations
with Crohn’s disease identified in the original individual-SNP analysis—specifically, it
recovers SNPs with trend p-values less than 4 × 10−8 in Table 3 of WTCCC (2007).
Two SNPs from the original analysis showing slightly weaker associations in region
49.3–49.87 Mb on chromosome 3 and region 150.15–150.31 Mb on chromosome 5 do not
satisfy our criterion for significance.

On the whole, the regions identified by the variational and MCMC methods in Ta-
ble 5 coincide. But there are notable discrepancies. Three regions on chromosomes 9,
14 and 21 have high expected counts in the MCMC inference, but low counts accord-
ing to the variational approximation. Interestingly, none of these three regions have
shown up in large meta-analyses of Crohn’s disease (Franke et al. 2010; Mathew 2008),
suggesting that these may be false associations. Perhaps this is due to MCMC conver-
gence issues. In contrast, the 12.7–12.9 Mb region on chromosome 18 that has a higher
sum of PIPs under variational inference has been confirmed by the same meta-analyses.
This latter region is a compelling candidate for Crohn’s disease because it contains a
gene for a T cell protein that plays a role in regulation of inflammatory responses to
pathogens (Mathew 2008). While these results suggest that the regions identified by
the variational method are more reliable than those identified by MCMC, we caution
that this comparison is limited. For example, the two regions on chromosomes 3 and 5
that were identified in the original analysis (WTCCC 2007) and not listed in Table 5
are assigned higher expected counts by MCMC than by the variational method. These
two regions were also confirmed by larger follow-up studies. Nonetheless, these results
suggest that variational inference can be a useful and less costly alternative to MCMC
in large variable selection problems.

7 Discussion

The main goal of this paper was to assess the utility of a variational approximation
for Bayesian variable selection in large-scale problems. It is important to investigate
alternatives to the standard approach—Markov chain Monte Carlo—to fitting variable
selection models because MCMC is often difficult to implement effectively. Designing a
Markov chain that efficiently explores the posterior distribution has been the focus of
dozens of research articles over the past couple decades.
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Our results highlight the pros and cons of the variational approach. A key advan-
tage is its computational complexity, which is linear in the number of variables. (Actual
run times depend on the number of coordinate ascent iterations needed to reach con-
vergence, which can vary depending on context; ideal conditions for quick convergence
are a sparse model and weakly correlated variables.) The variational method generally
provides accurate posterior distributions for hyperparameters. In idealized situations
with independent explanatory variables, it also provides accurate estimates of posterior
inclusion probabilities. When variables are correlated, individual posterior inclusion
probabilities are often inaccurate. Still, variational inferences can be useful in this case
because they help identify relevant variables and, for genetic association studies, they
point to relevant regions of the genome. And while this is not an aspect we have touched
on in this manuscript, our results suggest that the variational approximation can be use-
ful for prediction, particularly when we are less interested in identifying which variables
are included in the predictive model of Y .

Building on Logsdon et al. (2010), the variational method we describe is very flex-
ible. For example, it allows arbitrary priors for the hyperparameters, and continuous
or binary outcomes (see the appendix). The ability to handle binary outcomes is par-
ticularly useful in genetic association studies, where case-control studies are common.
This is a case where inference solutions based on MCMC can struggle: although data
augmentation (Albert and Chib 1993) is a well-known strategy for coping with binary
outcomes in MCMC, it often yields a slowly converging Markov chain (Liu and Wu
1999). Slow convergence is usually tolerated in small variable selection problems, but
it can be a crippling issue for problems with thousands of variables.

We derived the variational approximation with a specific prior for β and γ, but
it is easy to extend the approximation to other priors, including the g-prior (Liang
et al. 2008; Zellner 1986). The variational approximation is appropriate for the g-prior
without modification because βj and βk will be nearly independent a posteriori under
the same conditions as before, when Xj and Xk are independent. It is possible that
variational inference could be useful for other approaches to Bayesian variable selection,
such as those based on normal-gamma priors (Griffin and Brown 2010), but this remains
an open question.

To compute the posterior distribution of the hyperparameters without imposing
additional variational approximations, we suggested using importance sampling in which
the marginal likelihood in the importance weight is replaced with its corresponding best
variational lower bound. This idea of using a variational bound to approximate the shape
of the marginal likelihood has recently gained traction as a way to improve variational
inference (Bouchard and Zoeter 2009; Cseke and Heskes 2011; Ormerod 2011) and, in
principle, it could be useful for a wide variety problems. But in practice the accuracy
of the variational bound needs to be assessed.

Importance sampling worked well for our applications because we had at most three
hyperparameters. For a variable selection model with a large number of hyperparam-
eters, other Monte Carlo strategies would probably be more effective. For example,
one could replace the likelihood terms that appear in the Metropolis-Hastings accep-
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tance probability (Chib and Greenberg 1995) with the corresponding variational lower
bound. But this may lead to an expensive Metropolis-Hastings step, because computing
the likelihood would involve running the coordinate ascent updates to completion. It
remains to be seen whether this inference approach is useful for problems with many
hyperparameters.

A natural extension to our work would be to develop approximations with less strin-
gent conditional independence assumptions. This would be especially useful when we
have prior knowledge about the conditional independence structure of the variables. For
example, in genome-wide association studies the most strongly correlated SNPs are clos-
est to each other on the chromosome. Nevertheless, the fully-factorized approximation
we investigated in this paper remains appealing for its simplicity and ease of use.

Software

MATLAB and R implementations of our variational inference algorithm are available
on the Stephens lab website.

Appendix: extension to case-control studies

In this section, we describe an extension to our variational inference method for problems
with a binary outcome Y ∈ {0, 1}.

We begin with a linear model for the log-odds:

log
{

p(Y = 1)
p(Y = 0)

}
= β0 +

p∑

k=1

Xkβk. (15)

From this identity, it follows that binary outcome Y is a coin toss with success rate
ψ(β0+XT β), where ψ(x) = 1/(1+e−x) is the sigmoid function. Assuming independence
of the samples yi, and defining pi = ψ(β0+xT

i β) to be the success rate for the ith sample,
the likelihood is the product

p(y |X, β0, β) =
n∏

i=1

pyi

i (1− pi)1−yi . (16)

The scale parameter σ2 is not needed for modeling a binary outcome, so we only have
two hyperparameters (σ2

β , π) for the variable selection model.

From a computation point of view, the main inconvenience of the logistic model is
the appearance of the nonlinear sigmoid terms in the likelihood p(y |X, β0, β). This
will make it difficult to integrate over β0 and β. Laplace’s method is commonly used
to approximate the integral by forming a Taylor series expansion to the logarithm of
the posterior density function. This often results in a good approximation when the
Taylor series expansion is centered about a mode of the posterior (Tierney and Kadane
1986). For variable selection, however, it is extraordinarily difficult—and probably not
helpful—to compute a posterior mode due to the discontinuous spike and slab prior.
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For MCMC inference, data augmentation (Albert and Chib 1993) is a natural way to
deal with the nonlinear likelihood (this trick is typically used for probit regression). By
cleverly introducing an auxiliary variable, the posterior of β becomes normal conditioned
on that variable. But for variational inference it is unclear whether this auxiliary variable
is helpful. Instead, we formulate an additional variational lower bound.

Skipping the derivation (see Bishop 2006 or Jaakkola and Jordan 2000 for details),
the lower bound on the logarithm of the sigmoid function is

log ψ(x) ≥ log ψ(η) + 1
2 (x− η)− u

2 (x2 − η2), (17)

where we have defined u = 1
η (ψ(η)− 1

2 ). This identity holds for any choice of η. Since
this bound is symmetric about η = 0, we restrict η to the non-negative numbers.

For the moment, assume that the intercept β0 is zero. Replacing the sigmoid terms
in the likelihood (16) by their lower bound, we obtain a bound on the marginal likelihood
for a given collection of free parameters η = (η1, . . . , ηn):

p(y |X, θ, β0 = 0) =
∫∫

p(y |X, β0 = 0, β) p(β, γ | θ) dβ dγ

≥ ∫∫
ef(β;η) p(β, γ | θ) dβ dγ, (18)

where we define

f(β; η) ≡
n∑

i=1

log ψ(ηi) + ηi

2 (uiηi − 1)− 1
2βT XT UXβ + (y − 1

2 )T Xβ, (19)

and where U is the n×n matrix with diagonal entries ui. Notice that (19) is a quadratic
function of β. If the prior on β were, say, normal with zero mean and covariance
Σ0, then the variational approximation to the posterior would be normal with mean
µ = ΣXT (y− 1

2 ) and covariance Σ = (Σ−1
0 +XT UX)−1, and we would have an analytic

expression for the lower bound (18).

This variational approximation is similar to Laplace’s method in the sense that it
reweights the rows of X by scalars ui. Another interesting outcome from the variational
approximation is that y − 1

2 acts as a vector of continuous observations.

A natural question at this point is how to adjust the free parameters η = (η1, . . . , ηn)
so that the lower bound (18) is as tight as possible. We express the solution using
expectation maximization (EM): in the E-step, compute expectations of the unknowns
(β, γ), which we do in an approximate manner using the variational method; in the
M-step, compute the value of η that maximizes the expected value of the log-density
f(β; η). Note that while we formulate the variational inference algorithm using EM, we
are not using EM in the conventional sense. The argument we are maximizing over,
η, is not a parameter of the model; it is only a vector parameterizing the variational
approximation and does not have a meaningful interpretation beyond that.

To derive the M-step, we take partial derivatives of E[f(β; η)] with respect to the
free parameters:

∂E[f(β; η)]
∂ηi

= 1
2 (η2

i − (xT
i µ)2 − xT

i Σxi)× dui

dηi
, (20)
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where xi is the ith row of X, and µ and Σ are the posterior mean and covariance of
β (which we computed in the E-step). We can ignore the prior p(β, γ) in the M-step
because it is unaffected by the choice of η. Taking note that ui is a strictly monotonic
function of ηi, the fixed point and M-step update for ηi is

η2
i = (xT

i µ)2 + xT
i Σxi. (21)

This expression will simplify once we apply the variational approximation.

For linear regression, we remove the effect of the intercept β0 by centering y and the
columns of X so that they each have a mean of zero. Next we explain how to accomplish
this for the variational approximation to logistic regression. This can be understood as
a generalization of centering X and y with weighted samples.

Suppose the prior on β0 is normal with zero mean and standard deviation σ0. At
the limit as σ0 becomes large (yielding an improper prior on β0), the lower bound to
the marginal likelihood times σ0 is

σ0 p(y |X, θ) = σ0

∫∫∫
p(y |X, β0, β) p(β, γ | θ) p(β0) dβ0 dβ dγ

≥ σ̂0

∫∫
ef̂(β;η) p(β, γ | θ) dβ dγ, (22)

where we define

f̂(β; η) ≡
n∑

i=1

log ψ(ηi) + ηi

2 (uiηi − 1)− 1
2βT XT ÛXβ + ŷT Xβ + 1

2 ȳ2/ū, (23)

and σ̂0 = 1/
√

ū is the standard deviation of the intercept β0 given β. We write the
posterior mode of the intercept when β = 0 as β̂0 = ȳ/ū, and we define

Û = U − uuT

ū ŷ = y − 1
2 − β̂0u

ū =
∑n

i=1 ui ȳ =
∑n

i=1(yi − 1
2 ).

Notice that the entries of vector ŷ sum to zero regardless of the value of u. Also note
that when U = I, replacing y with ŷ and XT UX with XT ÛX is equivalent to centering
y and the columns of X.

Up to this point, we have yet to incorporate the fully-factorized variational approx-
imation q(β, γ) into our inference procedure for the logistic regression model. Since
we’ve taken care to integrate out the intercept from the variational lower bound, it can
be shown that the expected value of any off-diagonal entry (j, k) of XT ÛX is zero when-
ever variables Xj and Xk are conditionally independent. Like we did for the variable
selection model in linear regression, we can apply the fully-factorized approximation
(6) to the integral (22), yielding an additional lower bound. Proceeding in a similar
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manner, we obtain the following analytical expression for the variational lower bound:

log p(y |X, θ) ≥ log σ̂0 + 1
2 ȳ2/ū +

n∑

i=1

log ψ(ηi) + ηi

2 (uiηi − 1) + ŷT Xr − 1
2rT XT ÛXr

− 1
2

p∑

k=1

(XT ÛX)kkVar[βk] +
p∑

k=1

αk

2

[
1 + log

(
s2

k

σ2
β

)
− s2

k + µ2
k

σ2
β

]

−
p∑

k=1

αk log
(αk

π

)
−

p∑

k=1

(1− αk) log
(1− αk

1− π

)
, (24)

and the approximate solution is given by coordinate ascent equations

Var[βk | γk = 1] ≈ s2
k =

1
(XT ÛX)kk + 1/σ2

β

(25)

E[βk | γk = 1] ≈ µk = s2
k

(
(XT ŷ)k −

∑

j 6=k

(XT ÛX)jkαjµj

)
(26)

p(γk = 1 |X, y, θ)
p(γk = 0 |X, y, θ)

≈ αk

1− αk
=

π

1− π
× sk

σβ
× eSSRk/2. (27)

These are the coordinate descent updates that minimize the Kullback-Leibler divergence
for the fully-factorized approximation to the logistic model, in which we place spike and
slab priors on the regression coefficients.

Under the fully-factorized variational approximation, with the intercept included in
the logistic regression, the M-step update for the free parameters η, from (21), becomes

η2
i =

(
E[β0] +

∑
k xikE[βk]

)2 + Var[β0] +
p∑

k=1

x2
ikVar[βk] + 2

p∑

k=1

xikCov[β0, βk]. (28)

Means and variances of the coefficients β are easily obtained from the variational ap-
proximation: E[βk] = αkµk and Var[βk] = αk(s2

k + µ2
k) − (αkµk)2. The remaining

means and covariances in the above expression are

E[β0] = σ̂2
0(ȳ − uT XE[β]) (29)

Var[β0] = σ̂2
0

(
1 + σ̂2

0

∑
k(XT u)2kVar[βk]

)
(30)

Cov[β0, βk] = −σ̂2
0(XT u)kVar[βk]. (31)

Appendix: details of Markov chain Monte Carlo method

To simulate the Markov chain, we first analytically integrate out the additive effects β
and prior π:

p(γ, σ2, σ2
β |X, y) ∝ p(y |X, γ, σ2, σ2

β) p(γ, σ2, σ2
β)

=
∫∫

p(y |X, β, σ2) p(β | γ, σ2, σ2
β) p(γ |π) p(π) p(σ2, σ2

β) dβ dπ. (32)
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In the development of the MCMC algorithm, we assume that the prior on π is beta
with prior sample sizes a and b.

Each iteration of the Markov chain consists of three Metropolis-Hastings steps within
a Gibbs sampler (Chib and Greenberg 1995): (1) adjust σ2 given γ and σ2

β ; (2) adjust
σ2

β given γ and σ2; and (3) adjust γ given σ2 and σ2
β . Assuming the prior on σ2 is

inverse gamma with shape aσ/2 and scale bσ/2—the standard prior p(σ2) ∝ 1/σ2 is the
limiting density of the inverse gamma as aσ and bσ approach zero—we have a Gibbs
sampling step for σ2 because σ2 | γ, σ2

β is inverse gamma with shape (aσ +n)/2 and scale
(bσ +yT y−SSR)/2, in which SSR = yT XSXT y is the sum of squares due to regression,
and S = (1/σ2

βI +XT X)−1 times σ2 is the covariance matrix of the nonzero coefficients.
(Note that the mean of the nonzero coefficients is SXT y.) The X in these expressions
only includes the columns corresponding to nonzero coefficients.

To update σ2
β given γ and σ2, we propose a new candidate σ̂2

β = σ2
βeu, where u is

a random draw from the standard normal, and admit this candidate into the Markov
chain with Metropolis-Hastings acceptance probability

A(σ2
β , σ̂2

β) = min

{
1,

p(σ̂2
β , σ2)

p(σ2
β , σ2)

× exp
( ˆSSR− SSR

2σ2

)
×

∣∣∣∣
Ŝ

S

∣∣∣∣
1/2

× σ̂2
β

σ2
β

}
. (33)

Since the samples σ2
β and σ̂2

β depend on each other, the extra term σ̂2
β/σ2

β is needed
so that the Metropolis-Hastings acceptance probability satisfies the detailed balance
condition, as we need to account for the change of variables (Green 2003).

The most complicated part of our algorithm is the Metropolis-Hastings step for γ
given σ2 and σ2

β . The proposal is as follows. First, we decide whether to add a variable
(a “birth”) or remove a variable (a “death”) from the model according to probabilities
qbirth(γ) and qdeath(γ), respectively, such that qbirth(γ)+ qdeath(γ) = 1. When the number
of variables included in the model (m = |γ|) is greater than zero and less than the
total number of variables (p), we conduct a birth move or a death move with equal
probability. When m = 0, qbirth(γ) = 1. And when m = p, qdeath(γ) = 1.

First consider the case when we have chosen to add a variable to the model. Instead
of selecting a variable at random from the pool of excluded variables (variables Xk for
which γk = 0), we conduct a more efficient move and select a variable at a frequency
proportional to the likelihood. Precisely, we propose that γk = 0 be switched to γ̂k = 1
with probability proportional to p(y |X, γk = 1, γ−k, σ2, σ2

β). Writing `(γ) as shorthand
for the likelihood,

`(γ) ≡ p(y |X, γ, σ2, σ2
β) = (2πσ2)−n/2|S/σ2

β |1/2 exp
{

1
2σ2 (SSR− yT y)

}
, (34)
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the Metropolis-Hastings acceptance probability for the birth move works out to be

A(γk =0, γ̂k =1) = min

{
1,

qdeath(γ̂)
qbirth(γ)

× a + m

b + p−m− 1
× `(γk =0, γ−k)

`(γk =1, γ−k)

×
∑

j:γj=0

`(γj =1, γ−j)
`(γj =0, γ−j)

/ ∑

j:γ̂j=1

`(γj =0, γ̂−j)
`(γj =1, γ̂−j)

}
, (35)

where γ−k is the set of all indicator variables except the kth one. For the death move,
we propose that a γk = 1 be flipped to γ̂k = 0 with probability proportional to `(γk =
0, γ−k). The acceptance probability for a death move is

A(γk =1, γ̂k =0) = min

{
1,

qbirth(γ̂)
qdeath(γ)

× b + p−m− 2
a + m− 1

× `(γk =1, γ−k)
`(γk =0, γ−k)

×
∑

j:γj=1

`(γj =0, γ−j)
`(γj =1, γ−j)

/ ∑

j:γ̂j=0

`(γj =1, γ̂−j)
`(γj =0, γ̂−j)

}
. (36)

Computing the Metropolis-Hastings acceptance probabilities can be done efficiently with
a judicious block decomposition of the determinant and inverse of matrix S.
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