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Suppose we are given some target density on the sample spaceX ,
and it can be written in the form

p(x;θ) = exp
{
θT φ(x)−Ψ(θ)

}
, (1)

whereφ(x) is a vector-valued function that defines thesufficient
statisticson the sample spaceX , θ is a vector of parameters,uT v
is the inner product of vectorsu andv, andΨ(θ) is thelog-partition
function. Its negative is the free energy commonly encounered in
statistical physics [1]. The log-partition function ensures that the
density sums to unity;

Ψ(θ) = log
∑
x

exp
{
θT φ(x)

}
. (2)

In statistical physics, the density (1) is known as the Boltzmann
distribution. Usually, the realizationsx are vectors of random vari-
ablesxi defined at sitesi, and the entries of the sufficient statistics
vector factor in some fashion according to subsets of the random
variables.

The first result
It can be easily shown that the first-order and second-order partial
derivatives of the log-partition function with respect to individual
elements of the parameter vectorθ are equal to the moments of the
distribution. The partial derivatives are given by

∂Ψ
∂θk

=
∑

x exp{θT φ(x)}φk(x)∑
x exp{θT φ(x)}

=
∑

x exp{θT φ(x)}φk(x)
expΨ(θ)

=
∑
x

exp{θT φ(x)−Ψ(θ)}φk(x)

=
∑
x

p(x;θ)φk(x)

= E{φk(X)}. (3)

and
∂Ψ2

∂θkθl
=

∂

∂θl

∑
x

exp{θT φ(x)−Ψ(θ)}φk(x)

=
∂

∂θl

∑
x

exp{θT φ(x)−Ψ(θ)}
[
φl(x)− ∂Ψ(θ)

∂θl

]
φk(x)

= E{φk(X)φl(X)} − E{φk(X)} × E{φl(X)}
= Covp( · ; θ){φk(X), φl(X)}, (4)

where the expectations are with respect to the targetp(x;θ). Since
the partial derivatives (4) are covariances, the Hessian∇2Ψ is pos-
itive definite (the determinant of the covariance matrix must be

greater than 0) and by standard results in convex analysis the log-
partition functionΨ(θ) must be convex [2, Prop. B.4].

The second result
Assuming a finite sample space, the Boltzmann-Shannon entropy
of the distribution (1) is defined to be

H(θ) ≡ −
∑
x

p(x;θ) log p(x;θ). (5)

Notice that the entropy is the expectation off(x) with respect to
the distributionp(x;θ), wheref(x) = log p(x;θ). Since we are
always dealing with the distributionp, we assume that the entropy
H(θ) is always associated with the distribution in question (1).

Now, it turns out that we can write the entropy (5) in terms of
its average energy[9] and the log-partition function. Taking the
logarithm of (1) and then operating over its expectation, we have

−H(θ) = Ep( · ; θ){log π(X |θ)}
= Ep( · ;θ){θT φ(X)−Ψ(θ)}
= Ep( · ;θ){θT φ(X)} −Ψ(θ), (6)

since the log-partition function is independent of assignmentsx.
What we have in (6) is the average energy minus the log-partition
function.

The third result
Following the notation of [8], the Fenchel-Legendre conjugate is a
functionΨ?(µ) that takes as input a collection of parametersµ and
returns a number on the real line. It is defined by

A?(µ) ≡ max
η

{
ηT µ−Ψ(η)

}
. (7)

Also, given a set of parametersθ, we define its mean dualµ to be

µ ≡ Ep( · ; θ){φ(X)}. (8)

The key result here is that if input vectorµ happens to be the
dual mean of the set of parametersθ (i.e. (8) is satisfied), then we
have a closed-form expression for the Fenchel-Legendre conjugate
function, and it is given by the Boltzmann-Shannon entropy (5).
Why? The first thing to establish that the maximum of (7) is at-
tained at pointη = θ when we setµ according to (8): denoting the
function to be optimized in (7) by Q(η) ≡ ηT µ − Ψ(η) so that
Ψ?(µ) = maxη Q(η), the derivative of the objective function is

µ− Ep( · ; η){φ(X)}.
from the previous result (4). Since the log-partition function is con-
vex, it must have a unique optimum and this optimum is attained
when the gradient vanishes. As a result, the optimum of (7) is
attained whenµ = Ep( · ;η){φ(X)}, which is precisely our defi-
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nition (8) of the mean parameters with a new placeholderη. So
this substantiates the use ofµ in the both equation (7)—since the
optimum is attained atη = θ—and in (8). Putting these results
together, we have

Ψ?(µ) = θT µ−Ψ(θ) (9)

= θT Ep( · ; θ){φ(X)} −Ψ(θ)

= Ep( · ; θ)θ
T φ(X)−Ψ(θ)

= −H(θ). (10)

The last line follows immediately from (6).

The fourth result
The variational principle now follows almost immediately from the
previous result. It should also be fairly obvious to see that we can
take (9) and switch around the log partition functions1 in order to
obtain the variational representation

Ψ(θ) = max
γ

{
θT γ −Ψ?(γ)

}
, (11)

where the domain ofγ is the entire collection of mean parameters
that correspond to legal parameterizationsη; i.e. the domain of
interest is {

γ
∣∣ ∃ η such thatγ = Ep( · ; η)[φ(X)]

}
(12)

WhenX is finite, this set can be represented by a finite collection
of half-spaces [3] and is called themarginal polytopein [8]. In an-
other manner of speaking: if we can computeΨ?(γ) andθT γ for
some legalγ, then the variational principle (11) guarantees that we
have in our possession a lower bound on the log-partition function.

It is instructive to rederive this lower bound using Jensen’s in-
equality. Jensen’s inequality states that

f(E{X}) ≤ E{f(X)}
for any convex functionf(x). In our case, we use the fact that
f(x) = − log(x) is convex. From (10) we have

Ψ(θ) = log
∑
x

exp{θT φ(x)}

= log
∑
x

p(x;η)
p(x;η)

exp{θT φ(x)}

≥
∑
x

p(x;η) log
exp{θT φ(x)}

p(x;η)

= Ep( · ; η)θ
T φ(X)− Ep( · ; η) log p(X;η)

= θT γ +H(η)

= θT γ −Ψ?(γ).

Notice that (11) is equivalent to the classical variational principle of
statistical physics [1, eq. 4.4] where both sides of (11) are negated
and the maximum is replaced with a minimum.

Simply put, the variational bound (11) is not useful because we
don’t have an explicit representation of the Fenchel-Legendre con-
jugate functionA? (there are a few exceptions where we can ob-
tain an expression forA?, but naturally these aren’t very interesting
problems). So [6] introduces a tractable family of approximations
to the entropy, and this is what we will discuss next.

1This is legal because the mappingΨ(θ) is convex, and hence invertible on its
image [5, p. 56].

The fifth result
In many problems we encounter distributions of the form

p(x) =
1
Z

n∏
i=1

ψi(xi)
∏

(i,j)∈E

ψij(xi, xj), (13)

defined on an undirected graphG = (V,E) with verticesV =
{1, 2, . . . , n} and edgesE. These distributions are often referred
to as Markov random fields. We can rewrite this distribution in the
same form as (1):

p(x;θ) = exp

{∑
i

logψi(xi) +
∑
(i,j)

logψij(xi, xj)− logZ

}
.

(14)

By settingθ = {θi | i ∈ V } ∪ {θij | (i, j) ∈ E}, θi = logψi(xi),
θij = logψij(xi, xj) andΨ(θ) = logZ, we recover the original
Boltzmann representation (1).

Now let’s suppose that the graphG is a tree. Forgetting about
the exponential family representation (14) for a brief moment, the
junction tree theorem [4, Corollary 2.2] tells us that we can al-
ways write the distribution (13) in terms of its node and pairwise
marginals,

p(x) =
∏

i

µi(xi)
∏
(i,j)

µij(xi, xj)
µi(xi)µj(xj)

, (15)

whereµi(xi) for all i ∈ V andµij(xi, xj) for all (i, j) ∈ E are
the local marginal distributions. (Note that the junction tree theo-
rem applies more generally to factor graphs, which we don’t dis-
cuss here.) The notation for the marginals here is not accidental—
if the sufficient statistics vectorφ(x) is constructed from the site
statisticsxi for all i ∈ V and (xi, xj) for all (i, j) ∈ E, then
the marginals are indeed the mean parameters. From now on, let’s
assume that this is the case: the mean parameters correspond to
marginals. This is the case in thecanonical overcomplete repre-
sentation, which is just a fancy way of saying that the sufficient
statistics are delta-Dirac functionsδk(xi), for xi ∈ {1, . . . ,K} [7].

Assuming the overcomplete representation on discrete variables
and following the same derivation procedure as in (10)—that is,
taking the logarithm of both sides of (15), then taking the expecta-
tion with respect top(x;θ)—we obtain

E {log p(X;θ)} =
∑

iEp( · ; θ) logµi(xi)

+
∑

(i,j)Ep( · ; θ) log µij(xi,xj)
µi(xi)µj(xj)

=
∑

i

∑
xi
µi(xi) logµi(xi)

+
∑

(i,j)

∑
{xi,xj}µij(xi, xj) log µij(xi,xj)

µi(xi)µj(xj)
,

(16)

where the expectations are all with respect to the target density.
The left-hand side of (16) is −H(θ), so it is also equal toΨ?(µ)
when µ is the set of marginal probabilities. Key to this deriva-
tion is the requirement that the mean parametersµi(xi) be equal to
the marginal probabilities (and likewise for the pairwise marginals
µij(xi, xj)). This is not the case for other members of the expo-
nential family (such as the Normal).2 We will ignore this point for

2It is not immediately obvious how to extend the methodology here to the entire
family of exponential distributions.
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now, and assume an overcomplete representation on discrete ran-
dom variables.

The sixth result
Suppose someone gives you a set of mean parametersγ. That is,
γ belongs to the marginal polytope. You then bring out another
set of mean parametersγtree that is constrained to have the same
marginals,γij = γtree

ij , for all edges(i, j) belonging to the pre-
defined spanning tree. We don’t care about the marginals on the
other edges not in the spanning tree. Taking the first-order Taylor
expansion of the dual log-partition functionΨ? about pointγtree,
we get the following lower bound on pointγ:

Ψ?(γ) ≥ Ψ?(γtree) +∇Ψ?(γtree)T (γ − γtree), (17)

where the gradient vector contains the partial derivatives ofΨ? with
respect to the vectorγ. We get the inequality (17) becauseΨ? is
convex, and the gradient always undershoots the function surface.

Let’s now suppose thatµtree is the mean dual of some set of
parametersθtree that projects the original parameterizationθ onto
the given spanning tree; that is,θtree

ij = 0 for all edges(i, j) that
do not belong to the spanning tree. Recall from (3) that the partial
derivatives of the log-partition function recover the mapping be-
tween the original parameterizationθ and its mean dualµ. Due to
the convexity of the log-partition function, the reverse mapping is
then given by the partial derivatives

∂A?(γ)
∂γk

= ηk.

whereη is the mean dual of some arbitrary parameterizationγ.
That means that we can rewrite the inequality (17) as

Ψ?(µ) ≥ Ψ?(µtree) + (θtree)T (µ− µtree)
= Ψ?(µtree) +

∑
(i,j)θ

tree
ij (µij − µtree

ij ), (18)

where the summation above is over all edges(i, j) in the graph.
Wait. . . we’re not quite done! Notice that the summation in (18)
resolves to 0 because: 1) we’ve setθtree

ij = 0 for all edges(i, j) not
in the spanning tree, and 2) we’ve already said thatµtree

ij is equal
to µij for all edges belonging to the spanning tree. So we have the
simple inequality

Ψ?(µ) ≥ Ψ?(µtree). (19)

This inequality is true for anyµ andµtree that satisfy the conditions
discussed above. This result has an intuitive interpretation. It states
that entropy of the target distribution is always less than the entropy
of any “moment-matched” tree-structured distribution [5, p. 214].
We caution the reader that this is not the same as matching the
parameters.

The seventh result
Notice that (19) also applies for any convex combination of span-
ning trees. Supposing that we have a collection of trees such that a
treet is chosen with probabilityρt, then we have

Ψ?(γ) ≥
∑

t

ρtΨ?(γ(t)). (20)

The eighth result
We are finally ready to derive a variational upper bound on the log-
partition functionΨ(θ). As we’ve seen, we have upper bounds
on thedual log-partition functionA? via a convex combination

of spanning trees (20). How can we use this to achieve an upper
found on the log-partition function of interest,Ψ(θ)? Recall that
the variational principle tells us that

Ψ(θ) = max
γ

{
θT γ −Ψ?(γ)

}
,

which is just reiterating (11). Then we plug in the bound using the
convex combination (20) to obtain

Ψ(θ) ≤ max
γ

{
θT γ −

∑
t

ρtΨ?(γ(t))

}
. (21)

We’ve done a bad thing here because we’ve ignored the role of
constraints on the mean parametersγ. Recall, they should belong
to the set (12) known as the marginal polytope. Indeed, the vari-
ational bound (21) makes an implicit approximation to this set of
constraints, since it only considerslocal constraints. A succinct
(but lucid!) discussion can be found in Sec. 8.2 of [7].

From (10), the log-partition functionΨ?(γ(t)) is equal to the
negative entropy−H(η(t)), whereγ(t) is the mean conjugate dual
of η(t). Also, recall that the negative entropy for a tree is special
because it can be decomposed as (16). This means that we can
make the following substitution in the variational bound (21):

Ψ?(γ(t)) =
∑

i

∑
xi

γi(xi) log γi(xi)

−
∑

(i,j)∈Et

∑
{xi,xj}

γij(xi, xj) log γij(xi,xj)
γi(xi)γj(xj)

,

whereEt ⊆ E is the set of edges present in treet.

Alas, we are not quite done! The variational bound (21) is still
not practical on its own because it involves a convex combination
over the set of spanning trees, and a graph can have alargenumber
of spanning trees. The final piece of the puzzle, the last ingredi-
ent to the pie, is discussed in detail in Sec. 7.2.4 of Wainwright’s
thesis [5] and more succinctly in Sec. III of [6]. In essence, the
spanning tree polytopetells us that a convex combination over all
mean parameters on spanning trees can be reduced to an equiva-
lent compact representation that involves just the edge probabili-
ties. Denoting̃ρij to be the probability that edge(i, j) appears in a
spanning tree (according to the distributionρt), (21) becomes

Ψ(θ) ≤ max
γ

{
θT γ −

∑
i

∑
xi

γi(xi) log γi(xi)

−
∑

(i,j)∈E

ρ̃ij

∑
{xi,xj}

γij(xi, xj) log γij(xi,xj)
γi(xi)γj(xj)

}
. (22)

This is the same as Proposition 14 of [7]. Importantly, if we express
the bound asΨ(θ) ≤ maxγ Qρ̃(γ) where the distribution of edge
probabilitiesρ̃ is fixed,Qρ̃(γ) is convex and hence possesses a
single maximum.

The algorithm

We now derive the tree-reweighted sum-product updates which com-
prise an algorithm for coordinate ascent for computing the opti-
mum of to (22). We have a constrained optization problem, since
our approximation to the marginal polytope (which we haven’t dis-
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cussed) requires that∑
xi

γij(xi, xj) = γj(xj) and
∑
xj

γij(xi, xj) = γi(xi)

for all edges(i, j) ∈ E. For the functionsγi(xi) andγij(xi, xj)
and to be valid mean parameters, we also require that they sum to
one over their arguments. To fully specify the simplex, one gen-
erally includes inequality constraints to ensure that the beliefs are
strictly positive [9]. We will assume that all the mean parame-
ters are strictly positive, in which case the corresponding Lagrange
multipliers will vanish from the Lagrangian function. Incorporat-
ing the equality constraints discussed above, the Langrangian func-
tion [2, Sec. 3.1.3] for our optimization problem is

L(γ,λ,α) =
∑

i

∑
xi

γi(xi)θi(xi)

+
∑
(i,j)

∑
xi

∑
xj

γij(xi, xj)θij(xi, xj)

+
∑

i

(wi − 1)
∑
xi

γi(xi) log γi(xi)

−
∑
(i,j)

ρ̃ij

∑
xi

∑
xj

γij(xi, xj) log γij(xi, xj)

+
∑

i

∑
j∈N(i)

∑
xi

λji(xi)

∑
xj

µij(xi, xj)− µi(xi)


+

∑
i

αi

{
1−

∑
xi

γi(xi)

}

+
∑
(i,j)

αij

1−
∑
xi

∑
xj

γij(xi, xj)

 , (23)

where we definewi =
∑

j∈N(i) ρ̃ij and denoteN(i) = {j | (i, j) ∈
E} to be the set of neighbours of vertexi. The scalarsλij(xj) and
λji(xi) are the Lagrange multipliers associated with the marginal-
ization constraints andαi andαij are multipliers that enforce the
normalization constraints. Since all the constraints are linear, ev-
ery optimumγ possesses Lagrange multipliers, even whenγ is not
regular [2]. Note the similarity to the Bethe free energy [9], the
main difference being that entropy terms are weighted by the edge
probabilities.

We start by taking partial derivatives of (23) with respect to the
singleton and pairwise mean parameters. We have

∂L

∂γi(xi)
= θi(xi) + wi log γi(xi) + wi

−
∑

j∈N(i)λji(xi) + αi (24)

∂L

∂γij(xi, xj)
= θij(xi, xj)− p̃ij log γij(xi, xj)− p̃ij

+ λij(xj) + λji(xi) + αij . (25)

Setting the partial derivatives to zero, we obtain the correct sum-
product updates.
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