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Suppose we are given some target density on the sample &pacgreater than 0) and by standard results in convex analysis the log-
and it can be written in the form partition function¥ (8) must be convexd, Prop. B.4].

p(x;0) = exp {9T¢($) - \11(6)} ) @) The second result

whereg(x) is a vector-valued function that defines thafficient Assuming a finite sample space, the Boltzmann-Shannon entropy
statisticson the sample spack, 6 is a vector of parametera,” v  of the distribution {) is defined to be
is the inner product of vectoisandv, and¥(0) is thelog-partition - ] )
function Its negative is the free energy commonly encounered in H(9) = - Zp(w’ 0)log p(w; ). )
x

statistical physicsl]. The log-patrtition function ensures that the hat th is th . £ with
density sums to unity; Notice that the entropy is the expectationfdfc) with respect to

the distributionp(x; 0), where f(x) = log p(x;0). Since we are
U(0) =log» exp {67 ¢(x)}. (2) always dealing with the distribution, we assume that the entropy
x H(0) is always associated with the distribution in questibhn (
In statistical physics, the density)(is known as the Boltzmann  Now, it turns out that we can write the entrod) {n terms of
distribution. Usually, the realizationsare vectors of random vari-its average energy9] and the log-partition function. Taking the
ablesr; defined at sites, and the entries of the sufficient statistickgarithm of (1) and then operating over its expectation, we have
vector factor in some fashion according to subsets of the random _H(0) =E,(.. o) {log n(X |0)}

variables. .

The first result T
=E,..09{0" &(X)} — ¥(0), 6
It can be easily shown that the first-order and second-order partial o(0{0 (X)) ©) ©

derivatives of the log-partition function with respect to individuince the log-partition function is independent of assignments
elements of the parameter vecébare equal to the moments of thd//hat we have in@) is the average energy minus the log-partition

distribution. The partial derivatives are given by function.
37‘1’ _ Dw exp{BTgi)(x)} Pr(x) The third result
00, Y exp{0T¢(z)} Following the notation of§], the Fenchel-Legendre conjugate is a
> exp{6T¢(m)} b () functionU* () that takes as input a c_ollect_lon of parameje=@nd
= oxp U(6) returns a number on the real line. It is defined by
A* = Ty—w ) 7
— Zexp{OT(;S(m) o \11(9)} ¢k:($) (N) IIlTE]lX {77 © (T’)} ( )
® Also, given a set of parametefis we define its mean dugi to be
= p(a;6) ¢ () p=Ey . 0{p(X)}. ®)
_ ]Em{q,) (X)) 3) The key result here is that if input vectpr happens to be the
F ' dual mean of the set of parametéréi.e. (8) is satisfied), then we
and have a closed-form expression for the Fenchel-Legendre conjugate

(%i’el - 3%1 > exp{07p(x) — V(0)} i (x)

T

function, and it is given by the Boltzmann-Shannon entrdpy (
Why? The first thing to establish that the maximum of i6 at-
9 . (o) taineq at point) = Q\{Vhen'we seps according to 8): denoting the
= % Zexp{@ (x) — U (O)} |u(x) — =55, | or(z) function to be optimized m?()_ by_Q(n) = 77T_M - U(n) S0 th_at
© U*(pn) = max, Q(n), the derivative of the objective function is

= E{¢p(X) (X))} — E{ox(X)} x E{n(X)} 1= Ey o {o(X)}.

= Covy(;0) {0k (X), 21(X) ], 4) from the previous resuldj. Since the log-partition function is con-
where the expectations are with respect to the targetf). Since vex, it must have a unique optimum and this optimum is attained
the partial derivatives4 are covariances, the Hessi®A W is pos- when the gradient vanishes. As a result, the optimum7pfig
itive definite (the determinant of the covariance matrix must b#&ained whenu = E,(..,,){¢(X)}, which is precisely our defi-
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nition (8) of the mean parameters with a new placeholglerSo The fifth result
this substantiates the use pfin the both equation7j—since the In many problems we encounter distributions of the form
optimum is attained ap = 8—and in ). Putting these results

together, we have plz) = %Hwi(lﬁ') H Vij (i, ), (13)
W () = 07— W(B) ©) i=1 (i)em
_ GTEp(.‘e){qb(X)} —(0) defined on an undirected gragh = (V, E) with verticesV =
e {1,2,...,n} and edges. These distributions are often referred
=Ep..90 ¢(X)— V() to as Markov random fields. We can rewrite this distribution in the
=—H(0). (10) same form asl)):

The last line follows immediately frongj.
p(a;0) = exp < Y log (i) + Y log (i, x;) —log Z .
The fourth result i (5,7
The variational principle now follows almost immediately from the (14)
previous result. It should also be fairly obvious to see that we . _ . o .
. o S settingd = {6, Viu{6;| G E}, 0, =1
take @) and switch around the log partition functidria order to CES? ) g {6:]i d} { E |(G:7) € B}, 0 (;]gw’(.f?) |
. - : ij = log ¥ (x;, x;) and¥(0) = log Z, we recover the origina
obtain the variational representation Boltzmann representation){

v(0) = max {67~ —¥*(v)}, (11) Now let's suppose that the graghis a tree. Forgetting about

: . : . the exponential family representatiobdj for a brief moment, the
where the domain of is the entire collection of mean parameters P y rep

that correspond to legal parameterizationsi.e. the domain of junction tree theoremd4| Corollary 2.2] tells us that we can al-
interest is o ways write the distribution1(3) in terms of its node and pairwise

marginals,
{v|3nsuchthaty = E,.[¢(X)]} (12) B pij (%3, )
When X is finite, this set can be represented by a finite collection pa) = [T mite) [ () () (15)
of half-spacesd] and is called thenarginal polytopen [8]. In an- ‘ (2.) N
other manner of speaking: if we can compute(y) and@”~ for wherey;(z;) for all i € V andyu;;(x;, x;) for all (i,j) € E are
some legaty, then the variational principlel() guarantees that wethe local marginal distributions. (Note that the junction tree theo-
have in our possession a lower bound on the log-partition functioem applies more generally to factor graphs, which we don't dis-
It is instructive to rederive this lower bound using Jensen’s igdss here.) The notation for the marginals here is not accidental—
equality. Jensen’s inequality states that if the sufficient statistics vectap(x) is constructed from the site
statisticsz; for all i € V and (x;,x;) for all (i,57) € E, then

JELXD) < B{F(X)} the marginals are indeed the n(1ean Jp)aramete(rs. i:rom now on, let's

for any convex functionf(z). In our case, we use the fact thahssume that this is the case: the mean parameters correspond to

f(z) = —log() is convex. From10) we have marginals. This is the case in titanonical overcomplete repre-
() = logzexp{0T¢(m)} sen.tat'ior,l which is ju_st a fancy way of saying that the sufficient
- statistics are delta-Dirac functiong(x;), forz; € {1,..., K} [7].
p(z;m) Assuming the overcomplete representation on discrete variables
=1o * L exp{0T ()} i ivati iA i
gz (@) P and following the same derivation procedure aslf){-that is,
z ’ . taking the logarithm of both sides aff), then taking the expecta-
(7] i i - 0)— i
> 3" pla: ) log eXP{(w.¢()iL‘)} tion with respect t/(x; §)—we obtain
x piEsn E {logp(X;0)} = >, Ep .6 log pi(;)
=E,.n0T(X)—E, ..,ylogp(X;n pij (zi,a;)
B 0T7 \II*Z? ) =i 2w, Mi(wi) log pi(z;)
= 7= ) wij(@i,x;)

. . . . L L. + i 2 Yig Ly T IOgﬁ,
Notice that (1) is equivalent to the classical variational principle of Z( 9) Z{”“'”} i i) RIS ((i%)
statistical physics] eq. 4.4] where both sides atl) are negated
and the maximum is replaced with a minimum. where the expectations are all with respect to the target density.

Simply put, the variational bound {) is not useful because weT he left-hand side of1(6) is —H (6), so it is also equal t&*(u)
don’t have an explicit representation of the Fenchel-Legendre c¥hen p is the set of marginal probabilities. Key to this deriva-
jugate functionA* (there are a few exceptions where we can ofion is the requirement that the mean parametefs; ) be equal to
tain an expression fot*, but naturally these aren’t very interestingh€ marginal probabilities (and likewise for the pairwise marginals
problems). Soff] introduces a tractable family of approximationg'i; (i, #;))- This is not the case for other members of the expo-
to the entropy, and this is what we will discuss next. nential family (such as the Normal)We will ignore this point for

1This is legal because the mappift6) is convex, and hence invertible on its  2It is not immediately obvious how to extend the methodology here to the entire
image p, p. 56]. family of exponential distributions.



3

now, and assume an overcomplete representation on discreteahgpanning trees2()). How can we use this to achieve an upper
dom variables. found on the log-partition function of interesk,(0)? Recall that

the variational principle tells us that
The sixth result

Suppose someone gives you a set of mean parameteFhat is, (o) = max {67y —9*(v)},
~ belongs to the marginal polytope. You then bring out another, = | . ) . .
set of mean parametesé’ that is constrained to have the sam@hich is just reiteratingX1). Then we plug in the bound using the

marginals,y; = ~ie, for all edges(i, j) belonging to the pre- c0NVeX combinationZ0) to obtain

defined spanning tree. We don’t care about the marginals on the

other edges not in the spanning tree. Taking the first-order Taylor U(6) < max {GT'Y - Zpt\l/*(“/(t))} . (21)
expansion of the dual log-partition functickh* about pointy*e, K t

we get the following lower bound on point We've done a bad thing here because we've ignored the role of

T* () = UF (7)) + VI* (yFe) T (4 — 4, (17) constraints on the mean parametgrsRecall, they should belong

to the set {2) known as the marginal polytope. Indeed, the vari-

ational bound Z1) makes an implicit approximation to this set of

constraints, since it only considel@cal constraints. A succinct
Sut lucid!) discussion can be found in Sec. 8.274f [

where the gradient vector contains the partial derivativaistofith
respect to the vectoy. We get the inequalityl(7) becausel* is
convex, and the gradient always undershoots the function surf
Let's now suppose that'™e is the mean dual of some set o
parameter®' that projects the original parameterizati@monto From (10), the log-partition function* (")) is equal to the
the given spanning tree; that &> = 0 for all edges(s, j) that negative entropy-H (n")), wherey(") is the mean conjugate dual
do not belong to the spanning tree. Recall fr@that the partial of 7). Also, recall that the negative entropy for a tree is special
derivatives of the log-partition function recover the mapping beecause it can be decomposed ¥).( This means that we can
tween the original parameterizatiérand its mean dugk. Due to make the following substitution in the variational boud)¢
the convexity of the log-partition function, the reverse mapping is

* (A0 — (s (s
then given by the partial derivatives () Z Z%(%) log 7i(zi)
0A*(v) _ L i)
vl = D D vl ) log ST,

: . . . 1,j)EE: {x;,x;
wheren is the mean dual of some arbitrary parameterizatjon _ (e { ' .
That means that we can rewrite the inequality)@as whereE; C E is the set of edges present in tree

T () > U (o) + (0T (p — ptree) Alas, we are not quite done! The variational bouBd) (s still

* t practical on it it invol inati
— U () Z(i,j)eﬁgee(/iij ), (18) Mot practical on its own because it involves a convex combination

over the set of spanning trees, and a graph can hirg@number

where the summation above is over all edgeg) in the graph. of spanning trees. The final piece of the puzzle, the last ingredi-

Wait. .. we're not quite done! Notice that the summation18)( ent to the pie, is discussed in detail in Sec. 7.2.4 of Wainwright's

resolves to 0 because: 1) we've 8gt° = 0 for all edgeq(i, j) not  thesis p] and more succinctly in Sec. Il of]. In essence, the

in the spanning tree, and 2) we've already said (H&t is equal spanning tree polytopeells us that a convex combination over all

to ;5 for all edges belonging to the spanning tree. So we have figan parameters on spanning trees can be reduced to an equiva-

simple inequality lent compact representation that involves just the edge probabili-
T* () > U* (heree)- (19) ties. Denotingy;; to be the probability that edde, j) appears in a

spanning tree (according to the distributig), (21) becomes

07~ — Z > 7ilw:) log yi(w:)

i Ty

This inequality is true for any andp... that satisfy the conditions

discussed above. This result has an intuitive interpretation. It states

that entropy of the target distribution is always less than the entroﬁi@/(@) < mjx {

of any “moment-matched” tree-structured distributién . 214].

We caution the reader that this is not the same as matching the . iy (i)

parameters. = hij Y vig(ws, ;) log S (- (22
(i,))€EE {wi,x;}

The seventh result This is the same as Proposition 14 gf.[Importantly, if we express

Notice that (9) also applies for any convex combination of SPaRk . hound a® () < max, Q,(v) where the distribution of edge

ning trees. Supposing that we have a collection of trees such th&to%abilitiesﬁ is fixed, Q. (v) is convex and hence possesses a
treet is chosen with probability,, then we have single maximum TP

V(7)) =Y a0 (v1). (20)
t The algorithm

The eighth result We now derive the tree-reweighted sum-product updates which com-

We are finally ready to derive a variational upper bound on the Igmgise an algorithm for coordinate ascent for computing the opti-

partition function¥(8). As we've seen, we have upper boundsium of to £2). We have a constrained optization problem, since
on thedual log-partition functionA* via a convex combination our approximation to the marginal polytope (which we haven't dis-
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i JEN (i) Ts

JFZO% {1 - Z%(I’)}
+ i a1 = >0 (i) o (23)

(4,) Ti T

where we definey; = -, v ;) Ai; and denoteV (i) = {j [ (4, ) €

E} to be the set of neighbours of vertexThe scalars\;;(z;) and
Aji(z;) are the Lagrange multipliers associated with the marginal-
ization constraints and; andc;; are multipliers that enforce the
normalization constraints. Since all the constraints are linear, ev-
ery optimunry possesses Lagrange multipliers, even whénnot
regular P]. Note the similarity to the Bethe free enerdj,[the
main difference being that entropy terms are weighted by the edge
probabilities.

We start by taking partial derivatives &%) with respect to the
singleton and pairwise mean parameters. We have

oL
= 0;(x;) + w; logv;(x;) + w;
0vi(x;) () (i)
- ZjeN(i)/\ji(xi) + (24)
oL

—————— = 0ij(2i, z;) — Pijlogvij (@i, ;) — Piy
v anzy) Y j j j j j

+ /\ij (JfJ) + /\]1(.231) + Qg (25)

Setting the partial derivatives to zero, we obtain the correct sum-
product updates.



