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Abstract This paper shows (i) improvements over
state-of-the-art local feature recognition systems, (ii) how
to formulate principled models for automatic local fea-
ture selection in object class recognition when there is
little supervised data, and (iii) how to formulate sensi-
ble spatial image context models using a conditional ran-
dom field for integrating local features and segmentation
cues (superpixels). By adopting sparse kernel methods,
Bayesian learning techniques and data association with
constraints, the proposed model identifies the most rele-
vant sets of local features for recognizing object classes,
achieves performance comparable to the fully supervised
setting, and and obtains excellent results for image clas-
sification.

1 Introduction

Over the past few years, researchers in high-level vision
have shifted their focus from matching specific objects
to a significantly more challenging problem: recogniz-
ing visual categories of objects. Effective solutions do
exist for some image classification problems, so the big
push is to address more difficult problems such as object
localization (i.e. segmenting an object from the back-
ground). There has been much success in learning robust
representations of specific classes in constrained situa-
tions, notably frontal faces [52] and pedestrians in street
scenes [27,36], but general-purpose models that can be
trained to recognize object categories remain elusive.

A wealth of complementary developments in vision
and machine learning have lead to improvements in gen-
eral representations of object classes [1,15,18,38]. This
paper furthers the state-of-the-art by adopting a princi-
pled probabilistic model for data association and model
selection in object recognition. Our approach consists of
the following three steps:

1. Extract a sparse set of a priori local, informative re-
gions of the scene [15,34], often called keypoints [12,

31]. Such local interest regions bring tolerance to
clutter, occlusion and deformable objects, and their
sparsity reduces the complexity of subsequent learn-
ing and inference. In general, a good detector is one
that extracts a sparse set of interest regions without
sacrificing information content, and select the same
regions when observed at different viewpoints and
scales. There exist many definitions as to what con-
stitutes a good interest region, predicated on max-
imizing different criteria. Therefore, we expect that
using multiple detectors will provide complementary
information, hence improve recognition. Sec. 6.1 de-
scribes how interest regions are extracted and repre-
sented as feature vectors.

2. Train the Bayesian classification model developed
in [22] with an efficient Markov Chain Monte Carlo
(MCMC) algorithm for approximate probabilistic in-
ference. The inference algorithm identifies a sparse
and effective object class representation from the in-
terest region descriptors, and does so with little su-
pervision by explicitly representing the correspon-
dence between the extracted image keypoints and the
set of objects. We refer to this as “data association”;
see Sections 2-4 for more details.

3. For object localization, integrate two types of visual
cues: interest regions and low-level segmentation us-
ing superpixels [41]. On their own, independent, lo-
cal interest regions do not contain enough informa-
tion to segment the object from the background. We
propose a simple conditional random field [25] that
overcomes this deficiency by propagating information
across neighbouring superpixels and weighting super-
pixel labels by scores obtained from overlapping in-
terest regions. These ideas are described in full detail
in Sec. 5.

The resulting representations accurately detect and lo-
cate objects in a wide variety of scenes at different poses
and scales, even when training under very little user su-
pervision.
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Fig. 1 Three annotated images from the inria car train-
ing set. The circles represent some of the extracted fea-
tures. The feature labels y1, y2 and y3 in the first im-
age are known. In the second and third images, we don’t
know the correspondence between the features and the la-
bels, hence the question marks on the yi’s. Notice there is
no image that contains only car features, and the size of the
cars varies considerably. The correct correspondence is likely
y4 =−1, y5 =1, y6 =−1, y7 =1, y8 =1, y9 =−1 (1 means “car”
and −1 signifies “not car”).

We start with an example that illustrates the need
for explicitly modeling data association in object recog-
nition. After that, we motivate the proposed Bayesian
hierarchical model for data association and object recog-
nition.

1.1 A Case for data association in object recognition

Consider the toy training set in Fig. 1. It consists of
three images, each with a caption that indicates the pres-
ence or absence of one or more cars in the scene. The
numbered circles represent a few of the extracted inter-
est regions at their characteristic scale. The first image
does not contain a car, so we can justifiably deduce that
none of the circles are features of the car object class.
In the second and third training images, however, we
cannot conclude with certainty which of the regions be-
long to a car. The conventional approach to this problem
is to treat unlabeled feature vectors in the background
as noise [1,15,18], an approach which degrades signifi-
cantly when the object in question occupies only a small
part of the unlabeled image, as in the second image.1 A
more sensible strategy is to explicitly model the individ-
ual labels, allowing the learning algorithm to exploit the
unlabeled background features instead of being hindered
by them. This is precisely the approach proposed in this
paper.

Each label is a binary variable that indicates whether
the image keypoint belongs to a car (positive) or to the
background (negative). Data association is the problem
of determining the correspondence between the obser-
vations (image keypoints) and the set of objects. This
problem has been well-studied in the context of citation
matching [39]. In the setting we explore here, in which

1 FIX. The cited method [18] has a latent variable that in-
dexes the parts of an object, and an index of 0 corresponds an
occluded part. Curiously, they do not use this latent variable
to solve the correspondence problem; hence their “unsuper-
vised” learning approach.

Fig. 2 Two sample images from the MIT-CSAIL
database [51]. Yellow lines indicate car annotations.
The annotations are incomplete in both images, so learning
with data association is still appropriate in the presence of
annotated data.

there are only two classes (positive and negative), data
association is closely related to the multiple instance
learning problem [2,14]. In the classical multiple instance
formulation, a positive group label (here, groups are im-
ages) indicates that at least one of the individuals in the
group has a positive label—corresponding to a “contains
cars” caption—while a negative group label implies that
all individuals in the group have a negative label.2 For
our purposes, this formulation is not sufficiently informa-
tive for learning the correct association, since an image
may contain hundreds of unlabeled points, and in the
multiple instance setting only one of them is enforced
to have a positive label. We propose two alternatives.
In the first, we introduce image-level constraints that
enforce a certain number of the image keypoints to be-
long to the positive class. The problem is that it may be
hard to identify appropriate constraints. Referring back
to Fig. 1, the cars in the third image occupy much more
space than in the second, so the third image is likely to
contain more features associated with the car class. The
best we can do with hard constraints to set a conserva-
tive lower bound on the number of positives per image.
There is a better route: specify a ratio that indicates the
expected fraction of individuals with a positive label,
along with a level of confidence in such an expectation.
When objects vary significantly in size, a low confidence
on the expected fraction allows the model to adapt the
number of positive labels to each image. We call this
approach data association with group statistics. It was
first proposed in [23].

One might be skeptical that it is possible to achieve
proper recognition in this setting, given the wide vari-
ability exhibited in the training images, the high dimen-
sionality of the features, and the fact that there are hun-
dreds of unlabeled points per image. One alternative—
discovery of object categories without any labels—is ex-
tremely sensitive to the composition of the data set,
and works best when the images contain isolated, un-
occluded instances of the object [47]. Such unsupervised

2 Data association is also commonly studied as a special
case of semi-supervised learning [57]. This formulation is less
compatible since it has no notion of groups.
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methods are especially prone to learning artifacts of the
data set. The other alternative—complete supervision—
is not only unappealing but also unrealistic for general
object recognition problems. Complete supervision re-
quires the user to segment and annotate objects from the
background. This is not only a time-consuming task, but
also poorly defined since people tend to segment scenes
differently. It also inhibits exploitation of the vast quan-
tities of captioned images available on the Internet (in
the form of news photos, for example [37]). Experiments
in Sec. 6.3 show that our data association scheme largely
compensates for the lack of annotation data.

Even when annotations are provided, a recognition
system might still benefit from multiple instance learn-
ing. Consider images from the MIT-CSAIL database [51],
painstakingly annotated with more than 30 object classes,
including cars, fire hydrants and coffee machines. Despite
the effort in producing the scene labelings, the annota-
tions (shown in Fig. 2) are still far from complete. By
learning the labels in the unannotated areas, our model
can better exploit such training data.

Attempts have already been made in tackling the
problem of data association in object recognition.
Duygulu et al. [16] studied the problem from the per-
spective of statistical machine translation. They formu-
lated data association as a mixture model, using expec-
tation maximization (EM) to learn the parameters and
the unknown labels. Later, the translation model was
extended to handle continuous image features [8] and
spatial relations [7]. The problem with these approaches
is that the posterior over the parameters of the mixture
model is highly multimodal, so EM tends to get stuck
in local minima. The situation is no better when ap-
plying MCMC simulation techniques to mixture models,
due to a factorial explosion in the number of modes [10].
More complex representations only exacerbate the issue,
so mixture models are limited to simple, unimodal ob-
ject classes. While [7,8,16] tackle multi-category classifi-
cation, we can do likewise by combining responses from
multiple binary classifiers [50].

1.2 A Case for Bayesian learning in object recognition
We employ the augmented Bayesian classification model
developed in [22] with an efficient Markov Chain Monte
Carlo (MCMC) algorithm for Bayesian learning. The al-
gorithm accomplishes two things simultaneously: 1.) it
learns the unobserved labels, and 2.) it selects a sparse
object class representation from the high-dimensional
feature vectors of the interest regions. We introduce a
generalized Gibbs sampler to explore the space of labels
that satisfy the constraints or group statistics.

Bayesian learning comprehends approximation of the
posterior distribution through integration of multiple hy-
potheses. This is a crucial ingredient for robust perfor-
mance in noisy environments, and helps resolve sensitiv-
ity to initialization. In the presence of uncertainty about
the labels, Bayesian learning allows us to be open about

Fig. 3 The 9 feature vectors extracted for the small car data
set (Fig. 1). Points marked with an x are labeled as “car”,
and circles represent negative instances. The lightly shaded
lines are contours of the kernel response function (2) with γ,
β and σ set following to the description in the text. The dark,
solid line is a decision boundary obtained from simulation of
the model with full supervision (Sec. 2). The dashed line is
a decision boundary obtained from simulation of the model
with incomplete supervision (Sec. 3.1).

multiple possible interpretations, and is honest regarding
its confidence in a hypothesis. The latter is of particular
importance for integrating multiple visual cues for recog-
nition (see Sec. 5), since it helps weigh the decisions of
multiple models. The same cannot be said for learning
through optimization of the model posterior, using EM
for example, which results in a single point estimate.

Another advantage over other methods is that we do
not need to reduce the dimension of the features through
unsupervised techniques which may purge valuable in-
formation. Monte Carlo methods have received little at-
tention in high-level vision, but our results show that
they can be both effective and efficient in solving diffi-
cult problems.

In effect, what we describe is a “bag of keypoints”
model [12] that chooses the features that best identify an
object (e.g. the model for cars should select features that
describe wheels or rear-view mirrors). It is widely appre-
ciated that bag of keypoints methods—which treat in-
dividual features as being independent—are inadequate
for identifying and locating objects in scenes (a person
is not just an elbow!), and there has been much success
in learning relations between parts [18] and global con-
text [7,51]. Despite these objections, independent parts
models are not only efficient and relatively simple to im-
plement, but also remain the state-of-the-art in detection
systems [12,45] and, as we show, can function as a basis
for localization.

2 Bayesian kernel machine for classification

We start with a description of the model that assumes
complete supervision. In other words, each feature vector
xi has a known label yk

i ∈ {−1, 1}. The next section con-
siders the case when some of the labels are not obesrved.
We use a small running example throughout this section
to illustrate key concepts.
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The training data consists of a set of D labeled im-
ages, and each image j, for j = 1, 2, . . . , D, contains
a set of feature vectors {xi | i ∈ dj}. The set of fea-
ture vectors for all the images used during training is
x = {x1, x2, . . . , xN}, where N is the total size of the
training set. Our running example is the small car data
set depicted in Fig. 1, in which a hypothetical method
has extracted N = 9 feature vectors from the 3 images:

x =
{

0.10 0.15 0.40 0.15 0.45 0.50 0.95 0.95 0.40
0.90 0.85 0.05 0.95 0.10 0.50 0.95 0.90 0.10

}
.

Sec. 6.1 describes how to automatically obtain the fea-
ture vectors beginning with the raw pixel data. Under
the assumption of complete supervision, the question
marks in Fig. 1 have been replaced with the correspon-
dence described in the image caption. The feature vec-
tors xi are plotted in Fig. 3. Points marked with an x
are positive instances, and circles represent negative in-
stances.

We use a sparse kernel machine to classify the inter-
est region descriptors. The classification output depends
on the feature being classified, xi, and its relation to a
subset of relevant exemplars. The outputs of the classi-
fier are then mapped to discrete labels using the probit
link function. Following Tham et al. [49], we have

p(yi =1 |xi,β,γ) = Φ (f(xi,β,γ, xi)) , (1)

where the unknown function f is a weighted sum of ker-
nel responses given by

f(xi,β,γ) =
N∑

k=1

γkβkψ(xi, xk). (2)

The probit link Φ(·) is the cumulative density function
of the standard Normal distribution; it provides a con-
tinuous and monotonic mapping from the reals to the
range [0, 1], thus producing a valid probability. By con-
vention, researchers tend to adopt a logistic (sigmoidal)
link function, but the probit link is equally valid and will
lead to an efficient sampler.

The kernel or similarity function is denoted by ψ. We
use the Gaussian kernel ψ(xi, xk) = exp(−(xi − xk)2/σ)
since it worked well in our experiments, but other choices
are possible. We denote the vector of regression coeffi-
cients by β = [β1 β2 · · · βN ]T . In this semi-parameteric
modeling approach, feature vectors are mapped to a non-
linear, high-dimensional kernel manifold. There are as
many parameters βk as there are data instances, but as
we will see the variables γk reduce the model (1) to a
much lower manifold. Our model is discriminative, be-
cause it is specified as a conditional probability distribu-
tion of labels y given observations x, and not as a joint
distribution on {x,y}, as in a generative model. This
means we do not expend extra computational effort in
modeling quantities other than the variables of interest,
the labels y.

We introduce sparsity through a set of parameters
γ = [γ1 · · · γN ], where γk ∈ {0, 1}. Most of these binary
variables will be zero and so the classification probability
for feature vector xi will only depend on a small subset
of feature vectors. By learning γ, we learn the relevant
set of feature vectors, or prototypes, for each class.

Let’s illustrate these ideas by returning to our small
example. Suppose we were to choose the interest regions
1, 3 and 8 as prototypes, so γ1 = γ3 = γ8 = 1. A reason-
able choice for the regression coefficients might then be
β1 = −1, β3 = 0.01 and β8 = 0.5. To see why this is a
good choice, observe that the contours of the kernel re-
sponse function (2)—depicted by the lightly shaded lines
in Fig. 3—closely follow the decision boundary obtained
by simulation, depicted by the dark, solid line in Fig. 3.
(See Sec. 4 for more details on the simulation.) Here we
set σ = 1/4. Notice that x7 and x8 are isolated from
negative instances, and therefore do a good job discrim-
inating cars. The fifth feature vector, on the other hand,
responds in a similar way to background features, hence
lies on the decision boundary.

It is convenient to express (1) in matrix notation,

p(yi =1 |xi,β,γ) = Φ (Ψi,γβγ) , (3)

where Ψ ∈ RN×N is the kernel matrix with entries
Ψi,k = ψ(xi, xk), Ψi,γ is the ith row of the kernel matrix
with zeroed columns corresponding to inactive entries of
γ, and βγ is the reduced version of β containing only the
coefficients of the active kernels. Thus, the inner product
in (3) is shorthand for

Ψi,γβγ = ψ(xi, x1)β1 + · · ·+ ψ(xi, xN )βN .

The reduced kernel matrix Ψγ has height N and width
equal to the number of active kernels.

We follow a hierarchical Bayesian strategy [4], where
the unknown parameters {γ,β} are drawn from appro-
priate prior distributions. The intuition behind this hi-
erarchical approach is that by increasing the levels of
inference, we can make the higher level priors increas-
ingly more diffuse. That is, we avoid having to specify
sensitive parameters and therefore are more likely to ob-
tain results that are independent of parameter tuning.

A basic result in statistics states that when the vari-
ance of the noise is known up to a multiplicative factor
(denoted by δ2) and γ is fixed, the maximum likelihood
estimator of the regression coefficients β follows a Nor-
mal distribution with covariance δ2(ΨT

γ Ψγ)−1 [42]. This
motivates a conjugate prior of the form

p(β |x,γ, δ2) = N (0, δ2Sγ), (4)

where Sγ = (ΨT
γ Ψγ+εI)−1, I is the identity matrix, and

ε is a small value that helps maintain a prior covariance
with full rank.3 This is a stable version of the maximum

3 For the Gaussian prior to be well-defined, the covariance
matrix must be positive definite. It is easy to come up with
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entropy g-prior originally recommended by Zellner [55].
While some consider this choice of conjugate prior un-
orthodox due to its dependence on the data, Zellner’s
g-prior is still widely adopted in econometrics [21]. Also,
from a practical point of view, we avoid having to esti-
mate a full covariance matrix.

The multiplicative factor δ2 is in turn assigned an
inverse Gamma prior with two hyperparameters µ

2 , ν
2

specified by the user. One could argue that this is worse
than the single parameter δ2. However, the parameters
of this hyperprior have much less direct influence than
δ2 itself, and therefore are less critical in determining
the performance of the model [4,42]. Typically, we set µ
and ν to near-uninformative values.

Following [22], each γk follows a Bernoulli distribu-
tion with success rate τ ∈ [0, 1], which in turn follows
a Beta distribution with parameters a, b ≥ 1. This al-
lows the data to automatically determine the complexity
of the model according to the principle of Occam’s ra-
zor, while allowing the user some control over the prior.
Setting b � a on large data sets initializes the Gibbs
sampler to a reasonable number of active kernels.

The model is highly intractable. In particular, it is
non-linear and the posterior of the coefficients β is a
correlated, hard to sample, high-dimensional distribu-
tion. However, we can simplify the problem enormously
by introducing easy to sample low-dimensional variables
z = {z1, z2, . . . , zN}. These can be seen as a continuous
version of the binary labels satisfying

yi =
{

+1 if zi > 0,
−1 otherwise. (5)

From the probit model (1), the zi’s are independently
distributed according to

p(zi |γ,β, xi) = N (Ψi,γβγ , 1). (6)

The choice of distributions (5) and (6) ensures that the
original model (1) is recovered if we marginalize out z.4

Conditioned on z, the posterior of the high-dimensional
coefficients β is a Gaussian distribution that can be ob-
tained analytically. This simple trick, first introduced
by Nobel Laureate Daniel McFadden, is important to
Bayesian data analysis since it reduces a difficult infer-
ence problem to a much simpler problem of sampling
independent low-dimensional variables [33].

Putting all the pieces together, the discriminative
model is given by a joint density over the possible con-
figurations of labels y and unknowns θ = {z,β,γ, δ2, τ}

small examples in which the Gram matrix ΨT Ψ has one or
more eigenvalues that are close to zero, leading to numerical
instability.

4 The unit variance of zi given xi, γ and β follows directly
from the probit model (1), and in no way limits the flexibility
of the classifier.

Fig. 4 The directed graphical model of the fully-supervised
classification model. Shaded nodes are observed during train-
ing, and square nodes are fixed hyperparameters.

conditioned on the observed quantities x and the hyper-
parameters:

p(y,θ |x) = p(τ | a, b) p(δ2 |µ, ν) p(β |x,γ, δ2)

×
∏
k

p(γk | τ)
∏

i

p(yi | zi) p(zi |x,β,γ). (7)

The joint density (7) is complete due to the appearance
of the latent variables z [30]. The directed graphical
model in Fig. 4 summarizes the Bayesian kernel machine
for classification.

3 Two augmented models for data association

The model presented up to this point is nearly identical
to the one proposed in [49]. It assumes all the labels in
the training data are known. In this section, we augment
the model with either constraints (Sec. 3.1) or group
statistics (Sec. 3.2) in order to handle weak supervision.
We assume the practitioner has the privilege of setting
the constraints or group statistics priors in an informed
manner. For instance, the practitioner might know in
advance whether the object occupies a little or a lot of
space in the images. One might contend that training is
no longer fully automatic in this setting. Still, we main-
tain that this is better than either no supervision or full
supervision and, for that matter, experiments (Sec. 6)
show that our approach bears considerable improvement
other existing methods even when little thought is put
into the choice of constraints.

3.1 Constrained multiple instance learning

When the image caption says that no object is present,
all the labels are observed to be negative, and we re-
cover the latent regression variables zi following (6), as
in [33,49]. This situation occurs in the first image of the
cars data set (Fig. 1). The observed labels are denoted
by yk

i , and their corresponding real-valued responses are
denoted by zk

i .
When the image contains an instance of the object,

the unknown labels yu
i must satisfy constraints on the

minimum number of features of each class. We define
n(+) to be the constraint on the minimum number of
positive points in an image, and n(−) to be the minimum
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number of negatively classified points. The prior on the
hidden variables {zu

i } in each image is

p({zu
i } | {xi},γ,β) ∝

∏
i

N (zu
i |Ψγ,iβ, 1)×

IC(−)({z
u
i }) IC(+)({z

u
i }), (8)

where i ranges over the set of extracted feature vectors
in the image, C(−) is the set of assignments to yu

i (and
accordingly zu

i ) that obey the negative labels constraint
n(−), C(+) is the set of assignments to yu

i that satisfy the
constraint n(+), and IΩ(ω) is the set indicator: it evalu-
ates to 1 if ω ∈ Ω, and 0 otherwise. The prior (8) speci-
fies a region of support only for those label assignments
that satisfy the constraints. We assume that the region of
support is non-empty. Discrete constraints in non-convex
continuous optimization problems can be highly prob-
lematic. However, they can be realistically handled by
MCMC algorithms [22].

To illustrate the effect of learning under weak su-
pervision, we test a conservative constraint of n(+) = 1,
n(−) =0 on our token car data set. Small simulations of
the model with 100 samples (see Sec. 4) regularly get the
correct labels for most of the image keypoints. Note that
the shape of the posterior is sensitive to the choice of hy-
perparameters because the data set is small. Regardless,
it is evident that the image labels do not contain enough
information to identify the 5th and 6th interest regions
correctly or reliably. For the purposes of illustration we
show a sample decision boundary obtained under incom-
plete supervision, depicted by the dashed line in Fig. 3.

3.2 Learning with group statistics

An alternative to constrained data association is to aug-
ment the training data with two user-defined statistics:
an estimate mj ∈ [0, 1] of the fraction of positive in-
stances for each image j, and a global parameter χ quan-
tifying the confidence in these guesses. Higher values in-
dicate greater confidence, and thus greater sensitivity to
the choice of mj , while χ = 0 is a complete lack of confi-
dence, resulting in unsupervised learning. It is up to the
practitioner to regulate the level of sensitivity. In our
small example, a moderate setting of mj = 1

2 and χ = 1
produces classification results and a decision boundary
similar to that obtained in the constrained setting (see
the dashed line in Fig. 3).

The provided value mj is an estimate of the un-
known, true fraction of positives, λj , which in turn is
deterministically computed from the labels in the image
according to

λj =
1
Nj

∑
i∈dj

I(0,+∞)(zu
i ), (9)

where Nj is the total number of extracted feature vec-
tors in image j. Note that we implicitly integrate out yu

i

Fig. 5 The directed graphical representation of the classi-
fication model with group statistics. Shaded nodes are ob-
served during training, and square nodes are fixed hyperpa-
rameters.

in (9). As in [23], we use the Beta distribution to model
this noisy measurement process, so the prior on mj is

p(mj |λj , χ) = Beta (χλj + 1, χ(1− λj) + 1)

∝ mχλj

j (1−mj)χ(1−λj). (10)

The augmented classification model with group statis-
tics is summarized in Fig. 5.

4 Model computation

The classification objective is to estimate the predictive
density

p(yN+1 =1 |xN+1,x,y
k) =∫

p(yN+1 =1 |xN+1,γ,β) p(γ,β |x,yk) dθ (11)

for an unseen feature vector xN+1 given the training
data {x,yk}, where p(γ,β |x,yk) is the posterior den-
sity. This unseen feature vector might respresent the de-
scriptor for an interest region extracted in a test im-
age. Obtaining the probability (11) requires a solution
to several intractable integrals, including the normaliz-
ing constant of the posterior which arises from Bayes’
rule,

∫
p(yk,γ,β |x) dγ dβ, usually called the marginal

likelihood. Probabilistic inference is further exacerbated
by the presence of uncertainty in the labels yu. The ap-
proach we take here is to approximate the posterior with
a Monte Carlo point-mass estimate. From the definition
of the model (1), we have

p(yN+1 =1 |xN+1,x,y
k) ≈ 1

ns

ns∑
s=1

p(yN+1 =1 |xN+1,γ
(s),β(s))

≈ 1
ns

ns∑
s=1

Φ
(
ΨN+1,γ(s)β

(s)
γ

)
,

(12)

where ns is the number of samples {γ(s),β(s)}. Ideally,
we would like draw independent samples from the poste-
rior p(γ,β |x,yk), but doing so using rejection sampling
or importance sampling would not be advisable in this
setting. MCMC is a particular strategy for generating
samples as states of a Markov chain. The states do not
constitute i.i.d. samples from the posterior, but an im-
portant central limit theorem tells us that over time the
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1 Choose initial states γ, β, z and δ2.

2 For s = 1, . . . , ns,

3 For all known labels i,

4 Sample zk
i ∼ p( · |xi, y

k
i , γ, β); see (15).

5 For all unknown labels i,

6 Sample zu
i ∼ p( · |xi, {zu

−i}, γ, β, . . .); see (15,16,17).

7 Sample α̂2 ∼ π( · |µα, να).

8 Set w ← α̂× z.

9 Sample α2 ∼ π( · |x, w, γ, δ2, µα, να); see (22).

10 Set z′ ←
p

α̂2/α2 × z.

11 Sample β ∼ p( · |x, γ, δ2, z′); see (14).

12 Sample δ2 ∼ p( · |x, γ, β, µ, ν); see (18).

13 Sample γ; see Fig. 7.

14 Set γ(s) ← γ and β(s) ← β.

Fig. 6 Algorithm summarizing the parameter expanded,
blocked Gibbs sampler for the constrained data association
model (Sec. 3.1). The output is the collection of samples
{γ(s), β(s)}, for s = 1, . . . , ns.

distribution of the samples closely approximates the true
distribution, provided that the Markov chain is ergodic
and satisfies the detailed balance equation [44].

Kück et al. [22] develop an MCMC algorithm for
sampling from the posterior by augmenting the original
blocked Gibbs sampler [49] to the data association sce-
nario. Gibbs samplers are generally easy to implement
and prove their correctness, but they can be extremely
slow to converge to the true distribution if the random
variables exhibit strong correlation—and strong corre-
lations certainly abound here. For instance, the selec-
tion of the prototypes via γ is strongly influenced by
the choice of regression coefficients β, and vice versa.
Thus, we implement all the known strategies for acceler-
ation [22,49], including blocked moves and reparameter-
ization (Sec. 4.2). In addition, we use the Schur comple-
ment [6] to derive fast matrix updates (Sec. 4.3). One key
difference is that [22] uses rejection sampling to sample
the unknown labels subject to the constraints or group
statistics, while we adopt a more efficient MCMC scheme
and sample from the full conditionals.

We spend the rest of this section developing the MCMC
algorithm that produces correlated samples from the
posterior. An overall recipe is provided in Fig. 6, which
may serve as guidance throughout the rest of the sec-
tion. Since the algorithm is quite involved, we split up
the derivation into sections. In Sec. 4.1, we derive the
blocked Gibbs sampler with the exception of the sam-
pler for γ, which we leave until Sec. 4.3 since it is an
elaborate step. Sec. 4.2 improves upon the expected con-
vergence rate of the Gibbs sampler through introduction
of an expansion parameter.

4.1 Generalized blocked Gibbs sampler

If two variables are highly correlated, an ordinary two-
stage Gibbs sampler [44] will slowly navigate through the

joint space because it samples from the full conditional
distributions. We will see shortly that we can analyti-
cally derive the posterior of γ and β jointly, conditioned
on z and δ2, resulting in so-called “blocked” moves which
converge faster than a Markov chain derived from the
full conditionals [29]. We factorize the joint conditional
of the regression coefficients and variable selection pa-
rameters as

p(β,γ |x,z, δ2, a, b) = p(β |x,z,γ, δ2) p(γ |x,z, δ2, a, b).
(13)

Following Bayes’ rule, a straightforward derivation shows
that the conditional posterior for sampling the regression
coefficients is

p(β |x,z,γ, δ2) ∝ p(z |x,γ,β) p(β |x,γ, δ2)

= N
(
β

∣∣QγΨT
γ Z,Qγ

)
. (14)

where Z = [z1, . . . , zN ]T , Qγ = (ΨT
γ Ψγ + (δ2Sγ)−1)−1

and Sγ is defined in Sec. 2.
We can sample the zk

i ’s easily since they are indepen-
dent of one other. Again, we apply Bayes’ rule to obtain
the posterior distribution for zk

i conditioned on assign-
ments to the rest of the unknowns. When the label is
positive, we have

p(zk
i |xi, y

k
i =1,γ,β) ∝ p(yk

i =1 | zk
i ) p(zk

i |xi,γ,β)

= N (Ψγ,iβγ , 1) I(0,+∞)(zk
i ).
(15a)

Otherwise, when yk
i = −1 the conditional posterior is

p(zk
i |xi, y

k
i =−1,γ,β) = N (Ψγ,iβγ , 1) I(−∞,0](zk

i ).
(15b)

The conditional posterior of zk
i is a Normal density trun-

cated either to the right or to the left of the origin. Effi-
cient methods have been developed for drawing samples
from this distribution [43].

Sampling the zu
i ’s when the labels are unknown is

not quite as simple because the joint posterior does not
factorize nicely. While [22,23] use rejection sampling to
sample the unknown labels subject to the constraints
or group statistics, we adopt a more efficient MCMC
scheme and sample from the full conditionals in each
document. For the augmented model with constraints
(Sec. 3.1), we need to consider three cases. When the
number of positive labels—not counting the ith label—
is less than n(+), the new sample zu

i is required to be
positive, thus it is drawn according to the left-truncated
Normal (15a). When the number of negative labels other
than yu

i is less than n(−), the sampling distribution is
the right-truncated Normal (15b). Finally, we need to
consider a third case when the remaining labels satisfy
all the constraints, so that either yu

i = 1 or yu
i = −1 is

allowed; the full conditional is then simply

p(zu
i | {zu

−i},γ,β, xi) = N (Ψγ,iβγ , 1), (16)
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where i ∈ dj , and {zu
−i} refers to the collection of latent

variables zi in a particular image with the exception of
zu
i . Note that at least one of C(−) and C(+) is always

satisfied provided z is initialized within the region of
support.

Following Bayes’ rule and the conditional identity,
the Gibbs sampling step for data association with group
statistics (Sec. 3.2) is given by

p(zu
i |xi, {zu

−i},γ,β,mj , χ)
∝ p(zi |xi,β,γ) p(mj | zu

i , {zu
−i}, χ)

∝ N (zi |Ψγ,iβγ , 1) Beta(mj |χλj +1, χ(1− λj)+1).
(17)

This density is a weighted mixture of a left-truncated
and a right-truncated Normal density.

We sample the variance parameter δ2 according to
its conditional posterior,

p(δ2 |x,γ,β, µ, ν) ∝ p(β |x,γ, δ2) p(δ2 |µ, ν)

= IG
(

1
2 (µ+Σγ), 1

2

(
ν + βT

γ S−1
γ βγ

))
,

(18)

where we define Σγ =
∑N

k=1 γk to be the number of
active kernels.

4.2 Parameter expansion

The convergence rate of the Gibbs sampler suffers from
high correlation between parameter β and the latent
variables z [29]. We start by introducing a scaled ver-
sion of the latent variables,

wi = αzi (19)

with auxiliary parameter α. The idea is then to come
up with a new, overparameterized model π(y,w |x,θ, α)
that agrees with the original model (7) but has more
desirable variance properties. By agreeing, we mean the
new model conditioned on the labels y should satisfy∫

π(y,w |x,θ, α) dw =
∫
p(y,z |x,θ) dz. (20)

Here we denote the variables transformed under the scal-
ing (19) by w = {w1, . . . , wN}. If we specify the new,
parameter expanded prior as π(θ, α) =p(α |θ) p(θ), the
posterior distribution will be the same for both mod-
els provided (20) is satisfied. We can ensure that (20) is
satisified by appealing to the change of variables theorem
from multivariate calculus [32], and setting

π(y,w |x,θ, α) = p(y,z |x,θ) |Jα(w)|, (21)

where Jα(w) is the Jacobian of the vector-valued func-
tion that transforms the quantities w back to their orig-
inal values z. Under the change of scale (19), the deter-
minant of the Jacobian is Jα(w) = α−N .

Liu et al. [30] suggest placing an improper Haar prior
on the scaling parameter α since it leads to optimal con-
vergence.5 This is also the prior used by Tham et al. [49].
In practice, however, the Haar prior tends to be unsta-
ble, leading to very small or very large values of α. An
alternative is the inverse Gamma prior, α2∼IG(µα

2 ,
να

2 ).
It achieves an improved convergence rate while allowing
the user to tune µα and να for stability.

One can still sample from the expanded model (21)
without knowing its exact form. A general strategy for
sampling is presented in [30], and specifics behind the
derivations are given in our technical report [9]. The pa-
rameter expanded Gibbs sampler for β and z consists of
the following steps:

1. Generate a new sample z as explained in Sec. 4.1.
2. Draw a sample α̂2 from the prior π(α2 |µα, να).
3. Draw a sample α2 according to the conditional pos-

terior π(α2 |x,w,γ, δ2, µα, να) where w = α̂× z.
4. Obtain a new sample β from the conditional poste-

rior density π(β |x,γ, δ2,z′) where z′ = α̂/α× z.

The remaining steps of the Gibbs sampler are not af-
fected by the inclusion of the expansion parameter. We
obtain the following “blocked” step by employing Bayes’
rule and integrating out the regression coefficients, as we
do for the γ variables:

π(α2 |x,w,γ, δ2, µα, να)

∝ π(w |x,γ, δ2, α2)π(α2 |µ, ν)

∝ p(z |x,γ, δ2) |Jα(w)|π(α2 |µ, ν)

= IG
(
α2 | µα+N

2 , 1
2

[
να+WT

(
IN−ΨγQγΨT

γ

)
W

])
,

(22)

where z = w/α, W = [w1 · · · wN ]T , Qγ is defined as
before, and the marginalized likelihood term in (22) is

p(z |x,γ, δ2) =
∫
p(z |x,γ,β) p(β |x,γ, δ2) dβ

∝ exp
{
− 1

2

[
ZT

(
IN −ΨγQγΨT

γ

)
Z

]}
.

The steps for sampling the expanded model are summa-
rized in lines 3-7 of Fig. 6.

4.3 Sampling the variable selection parameter

Exact sampling from the γ posterior (13) conditioned on
δ2 and z is impractical because it requires evaluation of
2N possible configurations of γ. We outline an alterna-
tive first proposed in [48]. It is essentially a Gibbs sam-
pler implemented using Metropolis-Hastings (M-H) pro-
posals for more efficient computation. While sampling
from the posterior of γ is impractical, it is possible to

5 By improper, we mean that the prior is not a probability
measure as it does not integrate to one [42]. This is often
acceptable in practice because an improper prior can still
lead to a proper posterior. The Haar prior in particular has
strong justifications from a frequentist standpoint.
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1 For k = 1, . . . , N ,

2 If γk = 1,

3 Sample u ∼ U[0,1].

4 If u <
Σγ−k+a

N+a+b−1
,

5 Sample r ∼ U[0,1].

6 If r < A(γk =1, γ?
k =0), then γk ← 0.

7 Else if γk = 0,

8 Sample u ∼ U[0,1].

9 If u <
N−

P
γ−k+b−1

N+a+b−1
,

10 Sample r ∼ U[0,1].

11 If r < A(γk =0, γ?
k =1), then γk ← 1.

Fig. 7 Metropolized Gibbs sampler for γ. U[0,1] is the uni-
form distribution on the unit interval.

sample each γk from its full conditional. One could em-
ploy the Gibbs sampler to accomplish this, since the full
conditional probabilities can be computed as

p(γk |x,z,γ−k, δ
2, a, b) =

p(γk,γ−k |x,z, δ2, a, b)
p(γk =0,γ−k | . . .) + p(γk =1,γ−k | . . .)

,

where γ−k is the collection of variable selection param-
eters with the exception of the kth one.6 Even though
this Gibbs sampler is a vast improvement over sampling
directly from the conditional posterior of γ, it is still
costly since each of the N steps requires the evaluation
of two terms in the denominator, each which involves the
inversion of a large matrix. Thus, it is worth our while
to reduce the expense of these computations as much as
possible.

The main idea is to propose a change to γ infre-
quently, and to use Metropolis-Hastings to correct for
any discrepancy between our proposal mechanism and
the posterior distribution. A single step of the Metropolis-
Hastings algorithm [3,11] consists of sampling a candi-
date value γ? from a proposal distribution q(γ? |γ), and
then accepting the candidate γnew← γ? with probabil-
ity A(γ,γ?). Otherwise, the new sample remains un-
changed, and γ(new)←γ. The M-H acceptance probabil-
ity is given by

A(γ,γ?) = min
{

1,
p(γ? |x,z, δ2, a, b) q(γ |γ?)
p(γ |x,z, δ2, a, b) q(γ? |γ)

}
.

We need to consider two cases for the Metropolized
Gibbs sampler: when γk = 0 and when γk = 1. When
kernel k is inactive in the current sample γ, our proposal
consists of flipping γk to 1 with probability proportional
to the prior:

p(γ?
k =1 |γ−k, a, b) ∝ p(γ?

k =1,γ−k | a, b)

=
p(γk =1,γ−k|a, b)

p(γk =1,γ−k|a, b)+p(γk =0,γ−k|a, b)

=
Σγ−k + a

N + a+ b− 1
, (23)

6 Note the terms in the denominator do not sum to one.

where
∑

γ−k =
∑

k′ 6=k γk′ is the number of active ker-
nels, not counting the kth one. When a is much smaller
than b and the number of active kernels is small com-
pared to N , so the proposal is unlikely to activate an in-
active kernel, and hence the expensive part—computing
the M-H acceptance probability (step 11 of the algorithm
in Fig. 7)—is avoided. Depending on the strength of the
prior, the Metropolized Gibbs sampler can filter out a
lot of poor candidates while maintaining a desirable M-
H acceptance rate. When a flip is proposed, the change
is accepted with probability

A
(
γk =0, γ?

k =1
)

= min
{

1,
p(z |x, γ?

k =1,γ−k, δ
2)

p(z |x, γk =0,γ−k, δ
2)

}
.

(24)

The acceptance ratio reduces to a ratio of likelihoods
because the proposal terms cancel with the prior terms.
The likelihood terms that appear in (24) are given by
the following expression, discarding factors that do not
implicate the variable selection parameter γ:

p(z |x,γ, δ2)

=
∫
p(z |x,γ,β) p(β |x,γ, δ2) dβ

=
(
(2π)N

∣∣δ2SγQ−1
γ

∣∣ exp
{[

ZT
(
IN −ΨγQγΨT

γ

)
Z

]})−1/2

×
∫
N (β |QγΨT

γ Z,Qγ) dβ

∝
∣∣ 1
δ2 QγS−1

γ

∣∣−1/2 exp
{

1
2Z

T ΨγQγΨT
γ Z

}
. (25)

Naively, evaluation of the acceptance ratio (24) involves
computing the inverse of two large matrices in p(z |x,γ?, δ2),
Sγ? and Qγ? . We can do better by decomposing the in-
verse of Qγ? into a 2× 2 block matrix,

Q−1
γ? = ΨT

γ?Ψγ? + (δ2Sγ?)−1

= 1+δ2

δ2 ΨT
γ?Ψγ? + ε

δ2 I

=

[
Q−1

γ
1+δ2

δ ΨT
γ Ψγ?

k
1+δ2

δ ΨT
γ?

k
Ψγ

1+δ2

δ ΨT
γ?

k
Ψγ?

k
+ ε

δ2

]
, (26)

where Ψγ?
k

is newly activated column of the kernel ma-
trix. Notice that the bottom-right entry of (26) is a
scalar. Invoking the formula for the inverse of a block
matrix [6], Qγ? resolves to

Qγ? =
[
Qγ + v2dkQγAkAT

k Qγ −vdkQγAk

−vdkAT
k Qγ dk

]
, (27)

where v = 1+δ2

δ2 , Ak = ΨT
γ Ψγ?

k
and

d−1
k = vΨT

γ?
k
Ψγ?

k
+ ε

δ2 − v2AT
k QγAk

is the Schur complement of Q−1
γ . We obtain an itera-

tive expression for Sγ? in an analogous manner. Plug-
ging (27) into the ratio (24), we obtain the expression

A
(
γk =0, γ?

k =1
)

= min
{

1,
√
dk/(ckδ2)

× exp
(

1
2dk

(
ZT

(
IN − vΨγQγΨT

γ

)
Ψγ?

k

)2)}
, (28a)
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where c−1
k = ΨT

γ?
k
Ψγ?

k
+ ε−AT

k SγAk is the Schur com-
plement of S−1

γ .
When kernel k is active, it is deactivated with prob-

ability

p(γ?
k =0 |γ−k, a, b) ∝ p(γ?

k =0,γ−k | a, b)

=
N −

∑
γ−k + b− 1

N + a+ b− 1
,

and then accept the change with probability equal to

A
(
γk =1, γ?

k =0
)

= min
{

1,
p(z |x, γ?

k =0,γ−k, δ
2)

p(z |x, γk =1,γ−k, δ
2)

}
= min

{
1,

√
δ2c?k/d

?
k

× exp
(
− 1

2d
?
k

(
ZT

(
IN − vΨγ?Qγ?ΨT

γ?

)
Ψγk

)2)}
,

(28b)

where the scalar c?k is the inverse of the Schur comple-
ment of S−1

γ? and d?
k is the inverse of the Schur comple-

ment of Q−1
γ? . Both these values are easily recovered as

the kth row, kth colum entry of their respective matri-
ces, basically by reversing the block operations detailed
above. The Metropolized Gibbs sampler is summarized
in Fig. 7. Note that a proper implementation should
treat boundary cases.

The computational bottleneck of our MCMC algo-
rithm is the sampling of the variable selection parameter
γ. By manipulating the order of the matrix computation,
we have shown that it is possible to compute the nec-
essary acceptance probabilities (28) with O(N) elemen-
tary operations, provided the model has selected only a
small number of prototypes. In the worst case—when the
Metropolization trick offers little advantage and when a
lot of the kernels are active—the computational com-
plexity of the learning algorithm approaches O(N3). In
practice, we never come close to the worst case scenario
because both the prior and data favour sparsity.

5 Conditional random field for integration of
multiple cues

Even though positively classified local features often lie
on the object (see the experimental results of Sec. 6.3),
they are inadequate for separating the object from the
background. Interest regions have been used successfully
as a basis for image classification, but there are few pos-
itive results extending to the localization of objects. We
add an additional layer to localize the objects in an im-
age. The basic intuition behind our approach is that la-
bels on nearby interest regions and neighbouring seg-
ments should be useful in predicting a segment label.
We propose a simple conditional random field that in-
corporates segmentation cues and the interest region la-
bels predicted by our Bayesian kernel machine. Spatial
integration is achieved in a generic fashion, so we expect
that our localization scheme applies to a wide variety of
object classes.

Fig. 8 Diagrams illustrating how the quantities ai, aik, bk, bl

and bkl are computed for the conditional random field. The
contour length bk includes both the solid and dashed lines
surrounding segment k, and likewise for the length bl.

The first step is to learn a classifier using the Bayesian
learning algorithm described in Sections 2-4. Next, the
image is decomposed into superpixels—small segments
which induce a low compression [41]. We use the Normal-
ized Cuts algorithm [46] to segment images, but other,
less expensive methods could possibly be used with sim-
ilar returns. An example low-compression segmentation
produced by Normalized Cuts is shown in Fig. 9. The
extracted features of small segments are hardly suffi-
cient for locating object classes in cluttered scenes, so the
next step is to construct a conditional random field [25]
(CRF) that propagates information across an image’s
neighbouring superpixels and interest regions. CRFs have
been shown to be effective models for image classification
and region labeling [24,40].

Interest region labels influence the segment labels
through CRF potentials. The strength of a potential is
determined according to the overlap between the inter-
est region and the segment. Defining ai to be the area
occupied by interest region i, and aik to be the overlap
between segment k and interest region i, the potential
on the kth segment label ys

k is defined to be

φk(ys
k) =

∑
i

aik

ai
δ(ys

k =yi), (29)

where yi is the interest region label predicted by the
sparse kernel machine classifier (1), i ranges over the
set of interest regions in the image, and δ(x= y) is the
delta-Dirac indicator which returns 1 when x is equal
to y, and 0 otherwise. Since there is no overlap between
most segments and interest regions, most segment labels
are only influenced by small number of labels yi. See the
left of Fig. 8 for an example that demonstrates how the
quantities ai and aik are computed.

Next, we define the potential between two adjacent
segments k and l to be

µkl(ys
k, y

s
l ) = η +

bkl

2

(
1
bk

+
1
bl

)
δ(ys

k =ys
l ), (30)

where bk is the contour length of segment k, and bkl is
the length of the border shared by segments k and l. See
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Fig. 9 Superpixels for the third image in Fig. 1.

Fig. 10 Spatial layout of the conditional random field for the
third image in the token data set (see Fig. 1). White squares
correspond to superpixels (see Fig. 9). Black lines are drawn
between neighbouring superpixels, such that thicker lines rep-
resent stronger interactions, hence stronger enforcement of
label compatibility. Yellow circles depict the extracted image
keypoints at their characteristic scale. A thick black line be-
tween a white circle i and a white square k means that the
label ys

k is strongly encouraged to be equal to the keypoint
label yi.

the right-hand side of Fig. 8 for an example. The pair-
wise potential (30) is the prior compatibility of the la-
bels of neighbouring segments. For instance, if two iden-
tical, neighbouring segments share the same label, and
the shared border is one half of the segment contour
lengths, the response (30) resolves to η + 1

2 ; when the
labels differ, the potential is η. A large value of η means
the prior only infirmly enforces compatibility.

An unpublished theorem by Hammersley and Clif-
ford tells us that

p(ys |y) =
1

Z(y)

∏
k

φk(ys
k)

∏
l

µkl(ys
k, y

s
l ), (31)

defines a joint probability over the segment labels ys pro-
vided the potentials are always positive and the partition
function Z(y) is chosen so that (31) sums to unity [5].
The partition function is given by

Z(y) =
∑
ys

∏
k

φk(ys
k)

∏
l

µkl(ys
k, y

s
l ).

What we have defined in (31) is a probability den-
sity over the segmented labels ys conditioned on known
values—obtained by simulations—of the interest region
labels y. This is our conditional random field. Fig. 10
gives an example of the spatial layout of the conditional
random field for an image containing a car. Notice that
some of the segment labels (squares) are not directly
influenced by any inferred labels yi (circles), but the in-
fluence is still propagated through the potentials of the
CRF. In other words, all the segment labels are depen-
dent on each other.

There is only a single parameter η controlling the
strength of the potentials. At this point, there is no learn-
ing; we tune the parameter by hand. In our experiments,
we set η to a relatively strong prior, 1

10 , encouraging
neighbouring segments to have the same labels.

Even though equation (31) involves a product over all
pairs (k, l) of segments in the image, the adjacency graph
is sparse since only a few superpixels share a common
border, and as a result it is reasonable to use an inference
algorithm designed for sparse graphs. We use the tree
sampling algorithm of [19] to infer the hidden labels ys.

6 Experiments

We conduct three sets of experiments. First, we measure
the model’s ability to detect the presence or absence
of objects in scenes, comparing performance with pre-
viously proposed models. Second, we assess the model’s
capacity for learning the correct associations between lo-
cal features and class labels by training the model with
varying levels of supervision. Third, by integrating local
feature and segmentation cues in a principled manner,
we demonstrate reliable localization of objects. We start
by describing the setup for our experiments.

6.1 Experiment setup

We use interest region detectors which select informa-
tive or stable regions of the image. We use three differ-
ent scale-invariant detectors: the Harris-Laplace detec-
tor [34] which finds corner-like features, the Kadir-Brady
detector [20] which proposes circular regions with maxi-
mum grey-level entropy, and the Laplacian method [28]
which detects blob-like structures. Based on earlier stud-
ies [35], we chose the Scale Invariant Feature Trans-
form (SIFT) [31] to describe the normalized regions ex-
tracted by the detectors. We compute each SIFT de-
scription using 8 orientations and a 4 × 4 grid, result-
ing in a 128-dimension feature vector. A library for de-
tecting Harris-Laplace and Laplacian interest regions is
available on the Web at lear.inrialpes.fr/software. This li-
brary also includes SIFT routines. A matlab implemen-
tation of the Kadir-Brady detector was obtained from
www.robots.ox.ac.uk/∼timork/salscale.html. For fair compar-
ison, we adjust the thresholds of all the detectors in order
to obtain an average of 100 interest regions per training
image. The combination scenario has an average of 300
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detections per image. Note that Fergus et al. [18] extract
only 20 features per image on average, owing in part to
the expense of training, while Opelt et al. [38] learn from
several hundred regions per image.

For all our experiments using the constrained data
association model (Sec. 3.1), we fix the label constraint
n0 to 0 and set n1 between 15 and 30, depending on
the object in question. For instance, we have a rough
idea that cars in the inria data set often occupy a small
portion of the scene, so it is reasonable to set a small
constraint (n1 = 15) for the inria car experiments in
Sec. 6.2. Our constraints tend to be conservative, the
advantage being that they do not force too many points
to belong to objects that occupy only a small portion of
the scene. Clearly, the constraints do have an impact on
prediction, but experience dictates that small constraints
are sufficient to recover good results. See Sec. 6.3 for fur-
ther experiments and discussion pertaining to this issue.
When employing the group statistics model (Sec. 3.2),
we set the parameters to be approximately m = 0.3 and
χ = 400. They were modified slightly according to the
variability exhibited in the data set. As we discussed in
Sec. 3.1, it is assumed that the user is able to assign the
prior in an informed manner.

We set a = 1 and b according to a feature selection
prior of approximately 200 active kernel centres (thus the
prior depends on N), and we bestow near uninformative
priors on the rest of the model parameters: µ = ν = 0.01
and µα = να = 0.01. In all our experiments, we set σ to
0.01 with ε = 0.01 because our MCMC algorithm reli-
ably converged to a good solution. (Scale selection is an
unsolved problem.) We found that 2000 MCMC samples
with a burn-in period of 100 (ns = 1900) was sufficient
for a stable approximation of the model posterior. Pre-
diction by integrating the samples is fast: it takes about
1 second per image on a 2 GHz Pentium machine. The
learning stage, which involved running the blocked Gibbs
sampler for 2000 iterations, took a couple hours on the
smallest data sets, and over a day on data sets composed
of almost a thousand images.

We have made the code and data for all our experi-
ments available at lear.inrialpes.fr/objrecls.

6.2 Image classification

The experiments in this section quantify our model’s
capacity for identifying the presence or absence of ob-
jects in images. We refer to this task as image classifica-
tion. One should take caution, however, in generalizing
the results to recognition: unless the image data is well-
constructed, one cannot legitimately make the case that
image classification is equivalent to object recognition.
It is important to ensure the model learns to recognize
cars, not objects associated with cars, such as stop signs.
We address these concerns by proposing new experiment
data, “inria cars”, consisting of images arising from the
same environment: parking lots with and without cars.

Training images Test images

class with object without with object without

airplanes 400 450 400 450

motorbikes 400 450 400 450

wildcats 100 450 100 450

cars (rear) 400 400 400 400

cars (side) 360 450 360 450

faces 218 450 217 450

bicycles 100 100 50 50

people 100 100 50 50

inria cars 50 50 29 21

Table 1 Summary of experiment data. The sources for
the nine image databases are the following: the Caltech
motorbikes (side) and airplanes (side) were obtained from
www.vision.caltech.edu/html-files/archive.html, the wildcats
come from the Corel Image database, the cars (side) data set
was composed of the Caltech background images and other
images available at l2r.cs.uiuc.edu/∼cogcomp/Data/Car, the
Graz bicycles and people data sets are archived at
www.emt.tugraz.at/∼pinz/data/GRAZ 01, and the inria car
database can be downloaded from lear.inrialpes.fr/data.

The outdoor scenes exhibit a significant amount of vari-
ation in scale, pose and lighting conditions. In addition,
the new data set poses a challenge to learning with weak
supervision, since the cars often occupy a small portion
of the scene. See Fig. 1 for some example images. For pur-
poses of comparison with other methods, we also present
results on some existing databases of airplanes, cars, mo-
torbikes, wildcats, bicycle, faces and people. The experi-
ment data is summarized in Table 1. Note that the “cars
(side)” data set is the only data set in which positive
labels are observed during training, because there are
isolated instances of the object.

We adopt a simple voting scheme for image classifi-
cation by summing over the feature label probabilities
assigned by the model.

Results of the image classification experiments are
shown in Table 2. We report performance using the Re-
ceiver Operating Characteristic (ROC) equal error rate,
a standard evaluation criterion [18,38]. It is defined to
be the point on the ROC curve—obtained by varying
the classification threshold—when the proportion of true
positives is equal to the proportion of true negatives. We
used the constrained data association model for these
experiments, since we found the constraints to be gen-
erally easier to specify. We omitted error bars in our re-
sults because independent MCMC simulations with the
same choice of priors exhibited little variance. Table 2
compares the results of our model with those obtained
from several previously proposed methods: the boost-
ing method proposed in [38], the constellation model de-
scribed in [18], the “bag-of-keypoints” method developed
at Xerox [53], the discriminative representations based
on histograms of image patches [13], and the support
vector machine classifier using SIFT and SPIN descrip-
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data set H-L K-B LoG Combo MT Fergus Opelt Xerox Deselaers Zhang

airplanes 0.985 0.993 0.938 0.998 0.955 0.902 0.889 0.971 0.986 0.988

motorbikes 0.988 0.998 0.983 1.000 0.990 0.925 0.922 0.980 0.989 0.985

wildcats 0.960 0.980 0.930 0.990 0.940 0.900 — — — 0.970

cars (rear) 0.995 0.990 0.975 0.998 0.980 0.903 — 0.986 — 0.983

cars (side) 0.958 0.875 0.964 0.969 0.928 0.885 0.830 0.873 — 0.950

faces 0.972 0.935 0.963 0.963 0.871 0.964 0.935 0.993 0.963 1.000

bicycles 0.920 0.880 0.840 0.900 0.860 — 0.865 — — 0.920

people 0.800 0.740 0.840 0.820 0.780 — 0.808 — — 0.880

inria cars 0.966 0.897 0.897 0.931 0.793 — — — — —

Table 2 Image classification performance on test sets measured using the ROC equal error rate. The last five columns refer
to performance reported by Fergus et al. [18], Opelt et al. [38], Willamowski et al. [53] (“Xerox”), Deselaers et al. [13], and
Zhang et al. [56]. The fifth column “MT” is our implementation of the statistical machine translation model of [16] with
a vocabulary obtained by quantizing the Harris-Laplace interest regions into 1000 clusters. All the other columns state the
performance obtained using the proposed Bayesian model with regions extracted by various detectors (from left to right):
Harris-Laplace (H-L) [34], Kadir-Brady (K-B) entropy detector [20], Laplacian of Gaussians (LoG) [28], and combination of
the three detectors (Combo).

tors [56]. All methods except [18] use SIFT descriptors.
The last approach combines SIFT with rotationally in-
variant descriptors based on “spin images” [26].

In addition, as a baseline comparison we implemented
the statistical machine translation model for object recog-
nition described in [16]. The machine translation model
(“MT”) is designed to handle multi-category classifica-
tion, so our image classification task poses as a special
case. It is a mixture model which handles the correspon-
dence problem in unlabeled images through latent vari-
ables. However, there are two principal differences be-
tween the machine translation model and our Bayesian
kernel machine: 1) the feature vectors must be quantized
with k-means in order to obtain a vocabulary of discrete
tokens, or “blobs” [16], 2) simulation is a notoriously
difficult problem for mixture models, so EM is used to
approximate the posterior by a single sample. As sug-
gested by [47], we generated a vocabulary of size 1000
for each of the data sets. Despite the apparent simplicity
of the machine translation model, obtaining a single sam-
ple with EM sometimes took nearly as long as obtaining
2000 samples of our model posterior using MCMC. The
reason is that the number of active kernels in the MCMC
simulations tended to be considerably smaller than 1000.

Our model in combination with the three detectors
often produces the best image classification, at least when
comparisons with other methods are available. One ex-
ception is the Xerox classifier which performed better
on the faces data set [53]. The other exception is the
classifier recently proposed by Zhang et al. [56]; their
method is noticeably better at predicting the presence
of people and faces in images. We suspect that the rota-
tionally invariant SPIN descriptors enable their object
representations to achieve better generalization in cer-
tain cases. All the results of image classification should
be taken with some reservation; in most of these exper-
iments, it is not so clear whether classification properly
validates recognition.
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Fig. 11 The graph on the left plots the ROC curve for clas-
sification performance of car test images using the Harris-
Laplace detector (blue solid line) and the combination of
three detectors (red dotted line). The graph on the right
shows analogous results for the bicycles test set. In both
cases, the equal error rate (indicated by a large dot) is infe-
rior in the combination, but according to the full ROC curve
it may perform slightly better.

One of the more interesting results of Table 2 is that
no single detector dominates over the rest. This high-
lights the importance of having a wide variety of feature
types for object class recognition.

Another surprising result is that the “baseline”
method—the statistical machine translation model
of [16]—occasionally outperforms existing methods. This
suggests that the image classification task on some of the
data sets is less challenging than on others. The figures
reported in the last row of Table 2 confirms our hypoth-
esis that the inria car data set offers a greater object
recognition challenge. In spite of the difficulties posed by
this data set, our model does very well in classifying the
images.

Training with the combination of the Harris-
Laplace, Kadir-Brady and LoG detectors often—albeit
inconsistently—improves the equal error rate. For in-
stance, we see that the ROC equal error rate decreases
in the combination scenario for car, people and bicycle
classification. Upon closer inspection, however, the ROC
equal error rate can be deceptive (hence the results in
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Fig. 12 Plots of precision (percentage of correct positives)
versus average recall per image for the task of labeling indi-
vidual features as belonging to cars. Our definition of recall
here is not standard since we do not divide by the number
of regions in the image. The combination scenario extends to
300 along the x-axis, but we cut it off at 100. Our algorithm
learns which features are best in the combination, but this
performance does not necessarily translate to better image
classification (shown in Table 2).

Table 2 should be viewed with a dose of skepticism). If
we examine the full ROC plots in Fig. 11, the combi-
nation of detectors now appears to be equally advanta-
geous. Importantly, a precision-recall plot for the task
of labeling individual features as belonging to cars in
Fig. 12 shows that our classifier picks the best individ-
ual features first when given the choice between three
detectors in the combination scenario (the ground truth
was determined according to manual object-background
segmentations of the scenes). Note that in Fig. 12 the
Harris-Laplace detector is overly penalized because it
often selects corner-like features that are near, but not
on, cars. Fig. 13 shows a couple examples where learn-
ing a model with a combination of detectors results in
an improved image classification.

We show examples of correctly and incorrectly clas-
sified images, along with the interest regions extracted
by the detectors, in Fig. 14. Incorrectly classified images
tended to be unlike any of the images observed during
training, such as the van and the child’s bicycle. Also,
problematic images tended to exhibit unusual illumina-
tion conditions.

6.3 Investigation of data association

In this section, we ask to what extent our proposed
scheme for data association correctly labels the individ-
ual features, given that it is provided very little infor-
mation. In some sense, this task is unfair since many in-
dividual interest regions cannot discriminate the object.
Fig. 15 gives two examples of Kadir-Brady interest re-
gions that do not help discriminate bicycles. Even under
the best of conditions, we should not expect the classifier
to predict the feature labels perfectly.

K-B  1.000 K-B  1.000 K-B  1.000

LoG  1.000 LoG  1.000 K-B  0.996

K-B  0.996 LoG  0.995 K-B  0.988

K-B  0.997 K-B  0.990 K-B  0.986

K-B  0.974 K-B  0.971 LoG  0.964

LoG  0.955 LoG  0.917 K-B  0.913

Fig. 13 Two examples in which the combination of detectors
(top row) results in improved image classification over the
Harris-Laplace detector (middle row). The circles represent
the 9 interest regions that are most likely to belong to cars
or bicycles. The bottom row shows the top features along
with feature type and probability of positive classification.
The combination is an improvement precisely because the
Harris-Laplace detector fails to select good features in these
two images.

We frame the the investigation as follows: if manual
segmentations were provided, how much would it be an
improvement over image caption data? The answer cer-
tainly depends on the nature and quality of the data. At
the very least, we should expect that our model predicts
the correct labels of the discriminative features in the
inria car database, since it appears to exhibit sufficient
information to delineate positive and negative instances.

We conduct the experiment on the car database using
the interest regions extracted from the Harris-Laplace
detector. We test both hard constraints and group statis-
tics. We increase supervision by setting some unknown
labels yu

i known to fall on cars to yk
i = 1. Note that

there is some degree of noise associated with this pro-
cess, since an interest region near a car may or may nor
correspond to the car category. The results are presented
in Fig. 16. The ROC curves show how the accuracy in
labeling individual features changes with different levels
of supervision. As expected, the addition of a few hand-
labeled points improves recognition in training images.
However, further upgrades in supervision result in al-
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Fig. 14 Test images correctly (top four images) and incor-
rectly (bottom four) classified using interest regions extracted
by the Harris-Laplace (for cars and bicycles) or LoG detector
(for people). Dark blue circles represent local interest regions
that are more likely to belong to the object, while yellow
circles more probably belong to the background.

most no gains to recognition in test images. This shows
that our data association schemes largely compensate for
the lack of annotations in the data. Fig. 17 demonstrates
this effect on a single image.

6.4 Object localization

In this section, we evaluate the proposed conditional
random field for object localization. Precisely, object
localization is the task of segmenting the object from
the background; it is often referred to as “region label-
ing” [24]. This contrasts with a stronger notion of object
localization, in which individual instances of the object
must be isolated from the background; as such, a success-
ful localization implies correctly counting the number of
objects in the scene. This problem is more considerably
difficult to solve and its evaluation is more arbitrary [1,
17,54].

Fig. 15 The yellow circles are two interest regions extracted
by the entropy detector. By looking only at the pixels inside
the yellow circle, it is difficult to tell which one belongs to
the bicycle and which one belongs to the background.
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Fig. 16 The ROC plots demonstrate how learning with dif-
ferent proportions of hand-labeled points affects performance
on labeling individual car features. (a) Labeling accuracy us-
ing the constrained data association model (Sec. 3.1). (b) La-
beling accuracy using the data association with group statis-
tics model (Sec. 3.2). The Harris-Laplace detector is used for
both these experiments. With a lot of supervision, the mod-
els predict near-perfect feature labels in the training images,
but there is little improvement in the test images.

In order to quantify the accuracy of the conditional
random field model, we compare the object-background
segmentation predicted by the model with those drawn
by hand. Some examples of manual segmentations are
shown in Fig. 18. Perfect localization requires: 1.) that
the boundaries of the segments follow the object bound-
aries, and 2.) that the conditional random field predicts
the segment labels correctly. Even then, the evaluation
may not be precise since the ground truth annotations
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Fig. 17 Labeling of individual interest regions using the
model augmented with data association constraints. The
model was trained with various levels of supervision (see
Fig. 16). Left: Car test image, no observed car labels dur-
ing training. Right: The same image, except that the model
was trained with an additional 11% observed feature labels.
Dark blue circles are more likely than not to belong to the
object, and light yellow circles are more likely to belong to
the background.

Fig. 18 Examples of ground truth segmentations from the
bicycle and car databases.

contain some error, as evidenced by the examples in
Fig. 18.

The ROC curves in Fig. 19 report the quality of the
estimated segmentations in the car and bicycle databases.
The ROC plots are obtained by thresholding the la-
bel probabilities on the segments and then finding the
intersection with the ground truth segmentations. We
use the Harris-Laplace detector for the car images and
the Kadir-Brady entropy detector for the bicycles. The
“without CRF” results in Fig. 19 do not use the super-
pixels; the spatial information is acquired from the loca-
tion and scale of the interest regions. Our results show
that we gain a lot in localization by using the segments
to propagate interest region labels. The results in Fig. 19
show that our method is more reliable for locating cars
in images. Without the CRF, Fig. 19a shows that the
first selected labels selected are almost always within the
boundary of cars, but the model cannot make any pre-
dictions in areas where no interest regions are extracted
by the detector.

Some successful predictions in car test images are
shown in Fig. 20, and some less successful car recogni-
tion results are shown in Fig. 21. We observe poor local-
ization when the interest regions and superpixels fail to
complement each other. We did not tailor the CRF to
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Fig. 19 ROC plots for localization of (a) bicycles and (b)
cars, with (solid blue line) and without (dashed green line)
the proposed CRF model. We use the Harris-Laplace de-
tector for the cars, and the Kadir-Brady entropy detector
for extracting interest regions in the bicycles database. No-
tice that the addition of the superpixels with the conditional
random field dramatically improve the quality of the object-
background separation.

Estimated segmentation Estimated segmentationImageImage

Fig. 20 Good localization results on car test images. Darker
patches are more likely to correspond to cars.

a particular object class, so such results might very well
extend to other visual object classes.

7 Conclusions and Discussion

In this paper, we extended the discriminative power of
local scale-invariant features using Bayesian learning.
We showed that both models for generalized multiple in-
stance learning—constrained data association and learn-
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Estimated segmentation Estimated segmentationImageImage

Fig. 21 Poor localization results on car test images. Darker
patches are more likely to belong to the car class.

ing with group statistics—are remarkably well-behaved
in the face of noisy high-dimensional features and wide
variability in the unlabeled training data. Our method
allows us to solve the important problem of selecting lo-
cal features for classification. In addition, we proposed
a generic, probabilistic method for object localization
by integrating multiple visual cues learned through our
model. The experiments show our method successfully
segments the object from the background. The impor-
tant implication is that our Bayesian model selects the
features that really lie on or near the object.

The conditional random field we proposed does not
adapt its parameters to the object class in question since
there is no learning involved. An important question is
whether our Bayesian methods for data association can
be extended to more advanced models for learning to
recognize objects, such as those that incorporate con-
text, shape information, correlations between features
and different types of features. We suspect that it is as
much a challenge for machine learning as it is for vision.
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