
Documentation for imagetrans

Peter Carbonetto

pcarbo@cs.ubc.ca

April 28, 2003

Introduction

This document presents a brief overview of the imagetrans

package. I highly recommend you read this document be-
fore using or modifying the code I wrote. I did my best
to document the code fairly well but the fact is I did not
cover all the bases – there are some warnings, caveats and
advice that did not make its way into the function help
and comments.

The first thing you may be wondering is, what in the heck
is imagetrans? It is an environment for the purpose of
building and testing statistical generic object recognition
models using semantically- labeled data. If you want to
find out more about the theoretic (and not so theoretic)
underpinnings of all this code, I refer you to three papers,
a couple of which I wrote. These papers are

• Pinar Duygulu, Kobus Barnard, Nando de Freitas,
David Forsyth and Michael I. Jordan. “Object
Recognition as Machine Translation: Learning a Lex-
icon for a Fixed Image Vocabulary.” European Con-

ference on Computer Vision, 2002.

• Peter Carbonetto, Nando de Freitas, Paul Gustafson
and Natalie Thompson. “Bayesian Feature Weight-
ing for Unsupervised Learning, with Application
to Object Recognition.” Artificial Intelligence and

Statistics, 2003.

• Peter Carbonetto and Nando de Freitas. “Why Can’t
José Read? The Problem of Learning Semantic
Associations in a Robot Environment.” Workshop

on Learning Word Meaning from Non-Linguistic

Data in the Human Language Technology Confer-

ence, 2003.

My Masters thesis should be done sometime in the near
future, which will be the definitive reference for all this
stuff.

There’s lots of stuff in this package, so it is worth tak-
ing the time to go through each part step by step, as we
will do in succeeding sections. All the code is written in
Matlab. More specifically, using version 6.1 on RedHat
Linux platform version 7.3. You might encounter prob-

lems if you run the program a different operating system
or a different version of Matlab. Matlab has its draw-
backs, I find ease of debugging code makes it worthwhile
in the end. I hope you do too. And of course, if you find
any problems with this package, you may contact me at
pcarbo@cs.ubc.ca.

Before going into the different sections, let me explain
how the code is organized. Additionally, let me stress
that you should read this entire document before us-
ing my code. It’s really not very long, and I as-
sure you that the things I say will help you in the
long run. There is a total of five “subpackages”, each
identified by its own subdirectory. These subdirec-
tories are segmentimg, createlabels, createdatasets,
translation and resultsbrowser. There’s also a subdi-
rectory called general, and that contains multi-purpose
code used by all the subpackages. I won’t get into that
code in any amount of detail, but it contains some rou-
tines I wrote for parsing strings, manipulating matrices
and cells, creating a caches for the user interfaces, and
loading and saving data. Finally, there are some Matlab
files (the ones that end in the .m extension) in the main
package directory. Those are there either because they
didn’t fit in any of the subdirectories or because they are
examples showing how I used the functions on my com-
puter, and can serve as a concrete starting point.

Let’s create a story for all this code. Say you have
a bunch of images in a single directory. First what
you want to do is segment the images and create
the sets of features for each segment. The function
segmentimg/create segment data will do that all for
you. After waiting a bit of time for Matlab to pro-
cess all the images, you now have loads of information
contained in one directory in a format subsequent func-
tions will be able to understand. Next, what you’ll
want to do is create the labels for each of these images
and provide the manual correspondences for the ground
truth, so we can test your models properly. Fortunately,
I’ve created an elegant interface (if I must say so my-
self) for doing just that, createlabels/createlabels.
Once you’ve created proper labels for all the images, it
is time to put everything together and create a data
set using createdatasets/create datasets. Next, use

1

translation/evaluate model to train and translate the
test and training sets for your model(s). Finally, you’ll
want to inspect the results to see how your model
performed on the data set you built. You can do
this by plotting the average error measures for differ-
ent models using resultsbrowser/compare models or you
can view individual results by starting up the interface
resultsbrowser/imagebrowser.

One caveat regarding the functions described in later sec-
tions: all directory specifications should be absolute, not
relative. In other words, if you are using Matlab on a
UNIX-based platform, the directories should all start with
the “/”.

Also, throughout this package I use the words “blob”,
“segment” and “patch” and they all mean the same thing:
a contiguous region of an image.

Creating segment data

If you look in the subdirectory segmentimg you will see
a lot of functions, but the only one you really need is
create segment data. This function segments the images
and produces features for each image segment.

First, you want to set up a directory and one of the sub-
directories, usually called clrimages. A function call will
look something like this if you want to segment the images
using Normalized Cuts.

datadir = ’/project/imagetrans/data/imagesA’;

ncuts = ’/bin/ncuts’;

features = [1 3:6];

options = {’ncuts’, [], [], ncuts, ...

[], features};

create_segment_data(datadir, options);

Otherwise, if you would like to use the grid segmentation
instead, the list of Matlab commands would look like the
following:

datadir = ’/project/imagetrans/data/imagesA’;

ncuts = ’/bin/ncuts’;

features = [1 3:6];

patchsz = 24;

crop = 6;

options = {’grid’, patchsz, crop, [], ...

[], features};

create_segment_data(datadir, options);

For more information, type help create segment data in
the Matlab prompt.

The set of features you can compute are listed in file
features.txt. Each row lists the name of the feature,

the number of dimensions it adds to the patch informa-
tion vectors, and the Matlab file that is called to compute
the information for a single patch. The vector features

shown in the above code refers to the rows of this table.
In order to customize the set of features, you can add a
row to the features.txt file. (For example, texture is
currently absent from the set of possible features to com-
pute, so you may want to add it.) To create your own
Matlab feature-computing function, you need to follow
the following template:

% COMPUTE_MY_FEATURE

% Comments go here.

function f = compute_my_feature(img, nimg, ...

labimg, segment)

% Function body goes here.

img is a H ×W × 3 matrix of RGB colour-space values
where H is the height of the image and W is the width of
the image. img is the same as nimg, only the values are
normalized by the luminance of the image. labimg is a
H ×W × 3 matrix of entries in the CIE-Lab colour space.
segment is a H × W matrix, where entry (h,w) = 1 if
and only if that pixel is in the segment. Otherwise, the
entry is 0. The return value is a 1 × F vector of feature
values, where F is the number of features, and should
correspond to the second column of your new entry in the
table features.txt.

Segmenting images creates a lot of data in the directory
specified by datadir. I won’t into complete detail, but
I will explain briefly what the most important files are.
It creates some images in the subdirectories segimages

and blobimages, but these are only used for the graphical
user interfaces you will use later on. Matlab files describ-
ing the image segments are contained in the subdirectory
segments.

Open the text file image index. At the top is the
list of subdirectories where the auxiliary information is
stored. After that, there is a list of all the images that
were segmented. If you would like to add more im-
ages to this set later on, it is simply a matter of copy-
ing them to the clrimages subdirectory and re-running
create segment data since it keeps track of the images
it has already segmented. If you open the text file
blob features, you will first see the set of feature names
used. Below in the file is the computed set of features for
each patch in each image. As you should observe, this can
be a very large file. Finally, the adjacencies file contains
a single adjacency matrix for each image describing how
the patches are spatially organized; a 0 means the patches
are not adjacent, a 1 and 2 encode the above and below
relations, and 3 means the two patches are next to each
other.

2

Labeling the data

Once the images have been segmented and the feature
and adjacency information has been created to your sat-
isfaction, the next step is to manually annotate and la-
bel the images. I have created a Matlab interface called
createlabels/createlabels. Calling the interface would
look pretty much like this:

datadir = ’/project/imagetrans/data/imagesA’;

createlabels(datadir);

Let’s take a look at how the createlabels interface works.
I will occasionally refer you to Figure 1. The original
is displayed on the bottom-left of the interface, and the
segmented version on the top-left. To add a word to the
image caption, type it into the word text box and click on
the add/view button. If the word does not already exist
in the vocabulary, it will automatically be added. You
can also add a word if it already exists in the vocabulary
by highlighting it, then clicking on add/view. Delete a
word from the image with the delete button. Note that
you can add or delete multiple words, either by selecting
them in the vocabulary or typing them in the text box.
Once a word is highlighted in the vocabulary, you can
start labeling the individual words by clicking on the top-
right image. The patches that are annotated with the
highlighted word are shown in red. If you try to add a
word that already exists in the image label, it will simply
display the patches that are annotated by that word.

The four buttons below the vocabulary operate on it. The
purpose of most of the buttons is pretty self-explanatory.
If you have two words in the vocabulary that are synonyms
(e.g. “sea” and “water”), you can merge them first by
selecting two or more words in the vocabulary and then
clicking on the merge button.

Click on the forward and back buttons to scroll through
the set of images. Also, enter an image number in the box
in between the two buttons to go to an arbitrary document
in the set of images. Once in awhile, and definitely before
quitting, you should click on the save button to save the
labellings to disk.

The window is resizable.

Recovering labels

Say, for instance, you have the situation in which you la-
boriously labeled and annotated a large collection of im-
ages. Then, you decided that to improve the segmenta-
tion of the images, so you re-segmented them. Ordinarily,
you would have to re-label all the data. You can use the
recoup labels function in the createlabels directory to
recover the previously-labeled data. This will not result

in a perfect annotation, but it will be pretty good. For
certain segmentations, you may not have to re-annotate
the patches at all.

Creating data sets

Once you’ve labeled the data to your satisfaction, you
can now go about creating a data set by merging several
sets of labeled images. The function you will be using is
createdatasets/create datasets. Calling the function
will look something like this:

datadir1 = ’/project/imagetrans/data/imagesA’;

datadir2 = ’/project/imagetrans/data/imagesB’;

resultdir = ’/project/imagetrans/data/set1’;

datalabels = {’training’ ’test’};

proportions = [3 1];

seed = 2067;

create_datasets(datadirs, resultdir, ...

datalabels, proportions, 0, seed);

For more information, type help create datasets in the
Matlab prompt.

Once you’ve run create datasets, you will find a lot
of new files that have appeared in the result directory.
The file specs contains some information pertinent to the
whole data set, including the names of the features, the
names of the sets and information the graphical user inter-
faces use to locate the image data. In addition, each train-
ing and test set is stored in a separate subdirectory. Each
directory contains the files: adjacencies, blob words,
blobs, image blobs, image words, images and words. I
will give you a brief tour of what information each of these
files contains.

The words file is a list of all the words in that data set.
Usually one refers to words by their index, which is simply
the line number in this file.

The list of image names for the dataset are found in the
images. The first entry on each line refers to the image
set number, and the second is the name of the image. To
find out exactly what file each document points to, you
need to look up the directory pathname in the specs file,
tack on the name of the image as listed in the images file
and then add the image suffix at the end, again described
in the specs file.

Each line of image words is a label for document n, where
n in the line number. Each positive number corresponds
to a line number in the words file. The length of a doc-
ument’s label is specified by the number of positive num-
bers.

Each row in the image blobs is a list of all the blobs (or
patches) in the document, just as in the file image words.

3

Figure 1: The createlabels interface.

Each number refers to a line number in blobs, to be de-
scribed shortly. To figure out how many patches are in
a single document, simply count the number of non-zero
entries.

blobs contains the feature information for the blobs in the
documents. Each row is a single feature value. To find
out what these features actually mean, look in the specs

file.

There’s more information about the blobs contained in
the file adjacencies. Each entry in this document is a
2-dimensional matrix, where entry (i, j) is positive if the
ith and jth patches in the document are adjacent. More
specifically, a 1 means that patch i is next to patch j, 2
means i is below j, and 3 represents the above relation.
Each document takes up a number of lines equal to the
number of blobs, which you can find from the image blobs

file.

Lastly, we need to talk about the blob words file. Like the
adjacencies file, each document takes up a number of lines
corresponding to the number of patches. Each line corre-
sponds to a single patch in a single document, and lists
zero, one or more possible correct annotations, as deemed
by the annotator. Each non-zero entry corresponds to a

line number in the words file.

Training your model

Okay, now we are getting to the meat of the image-
trans package here. The method you will be using is
translation/evaluate model. There are a lot of issues
to discuss with respect to this function, but first I will
show a typical script for training a model:

datadir = ’/project/imagetrans/data/set1’;

modeldir = ’/project/imagetrans/data/models’;

model = ’modelA’;

numtrials = 16;

evaluate_model(datadir, modeldir, model, ...

1:numtrials);

In this specific situation, what evaluate model

does is loads the data located in the directory
/project/imagetrans/data/set1, loads the spec-
ifications for the model contained in a text file
/project/imagetrans/data/models/modelA.txt,
trains the model using the data on tri-
als 1 to 16, and stores the results in

4

/project/imagetrans/data/set1/results/modelA.
Most of the results are stored in subdirectories, one for
each trial. Note that all model specification files must
end with .txt. The trial numbers must be specified as a
vector; you don’t necessarily have to start with trial 1.
This is useful if you want to run several of the trials in
parallel on different machines.

So far, I’ve told you the minimal information to evaluate a
model. However, if you want to write the specifications for
your own model or program your own training algorithm
in Matlab, you need to know more, so read on.

Say you would like to create your own model. First, look
at the file translation/models.txt. Each set of five lines,
including the blank line, encodes the information needed
to run a particular model type. The first line is the name
of the model. The second, third and fourth lines are names
of Matlab functions for training the model, writing the
learned model parameters to disk, and translating a set
of documents using the trained model. To create your
model, the first thing you need to do is create an entry at
the end of the table, since the function evaluate model

will refer to it.

Once that’s done, your next task to write the func-
tions corresponding to the function names listed in the
models.txt table, using the following templates:

% MYMODEL_TRAIN

% Comments go here.

function [model, val] = mymodel_train(B, W, ...

A, M, L, numwords)

% Function body goes here.

% MYMODEL_WRITE

% Comments go here.

function mymodel_write(d, model)

% Function body goes here.

% MYMODEL_TRANS

% Comments go here.

function t = mymodel_trans(B, M, A, model)

% Function body goes here.

The function parameter B is a F × B × N matrix where
F is the number of features, B is the maximum number
of blobs in an document or image, N is the total number
of documents, and each entry (f, b, n) contains a single
feature value for a blob. W is an N ×W matrix of word
indexes where W is the maximum size of an image label;
i.e. the maximum number of words in a document. A

is a cell array of adjacency matrices of length N . Each
adjacency matrix is of dimension Bn×Bn, where Bn is the
number of blobs in document n and entry (i, j) describes
the spatial relation between two blobs with indexes i and
j. For more information on the adjacency matrix, see the

description in the section “Creating data sets”. M is an
N×1 matrix of blob counts and L is a N×1 matrix of word
counts or label sizes. numwords is the total number of word
tokens in the data set. In addition to these parameters,
the function mymodel train can also take a set of model-
specific parameters. We will discuss model specification
files in more detail below.

The model training function has two return values. The
first, model, is a struct containing any information perti-
nent to image translation. You can fill this with informa-
tion to your discretion. val is a number describing how
good the result of training is, which is needed when the
user runs several trials and wants to make an educated
guess about which is the best training run. For example,
this could be the computed joint log likelihood or poste-
rior.

The parameters for mymodel write are d, the directory to
write to, and model, the value returned from the training
function described above.

The function parameters for the translation function are
equivalent to those described above. The return value t

is a V × B × N matrix where V is the total number of
word tokens considered by the model, B is the maximum
number of blobs in a single image and N is the number of
images. Each entry (w, b, n) is the probability that blob
number b in document n is annotated with word index w.
Since they are probabilities, all the words for each blob
and image should add to 1.

Let’s say you’ve written the functions for your new model.
To test it, you need to create a model specification file.
Going along with the sample script written above, let’s
call it modelA.txt. The text file will look something like
this:

Model label: "Model A"

Model name: "mymodel"

Features: 3 8:13

Blob area threshold: 0.01

Num blobs per doc: "all"

Num restarts: 6

Num faulty starts: 50

All the lines listed above are required for all models. In
other words, these are model-generic parameters. The
first line is simply a tag to describe the model, and will
be used for display in graphs and so on. The model name
must be the same as the name listed in the models.txt

file. The third line is the dimensions of the set of blob
features you would like to use for training (to see what
they are, look at the specs file in the respective data set).
If you would like to use all the features, set it to "all".
The Blob area threshold must be a number between 0
and 1. If the area ratio of a blob is less than this number,
we remove it from the set of blobs. To keep all the blobs,

5

set it to 0 or type "none". If a "C" is added to the end of
this value and the whole thing is surrounded with double
quotes, the blobs will also be thresholded by area dur-
ing the test phase. Num blobs per doc is the maximum
number of blobs in a document, and we remove any that
exceed this number. If you want to keep all the blobs,
specify "all". The next line is the number of times to
train the model, keeping only the best one. Some algo-
rithms fail under rare initial conditions. This is especially
the case when we are sampling from unstable distribu-
tions. If so, you might want to set Num faulty starts to
a large value so that the program recovers from a failure.
Otherwise, set this value to 1.

In this package, there is already a set of models you can
try out. We will now proceed to describe how to use them
by listing sample model specification files. The settings
that I use below tended to lead to good results.

Model label: "dML1"

Model name: "Model 1 discrete ML"

Features: "all"

Blob area threshold: 0.01

Num blobs per doc: "all"

Num restarts: 3

Num faulty starts: 1

KM iterations: 24 % For K-Means

EM iterations: 24

EM tolerance: 0.1

Model label: "dML1O"

Model name: "Model 1 discrete ML online"

Features: "all"

Blob area threshold: 0.01

Num blobs per doc: "all"

Num restarts: 3

Num faulty starts: 1

KM iterations: 24 % For K-Means

EM iterations: 4

Learning schedule a: 0.98 % Scaled by number of

Learning schedule b: 0.05 % documents

Model label: "gML1"

Model name: "Model 1 Gaussian ML"

Features: "all"

Blob area threshold: 0.01

Num blobs per doc: "all"

Num restarts: 3

Num faulty starts: 50

KM iterations: "n/a" % For K-Means

EM iterations: 24

EM tolerance: 0.1

Diagonal covariance: "no"

Random init: "yes" % If "yes", we don’t

% use K-Means.

Model label: "gML1O"

Model name: "Model 1 Gaussian ML online"

Features: "all"

Blob area threshold: 0.01

Num blobs per doc: "all"

Num restarts: 3

Num faulty starts: 50

KM iterations: "n/a" % For K-Means

EM iterations: 24

Learning schedule a: 0.98 % Scaled by number of

Learning schedule b: 0 0.1 % documents. The first

% b corresponds to means,

% the second to variances.

Diagonal covariance: "no"

Random init: "yes" % If "yes", we don’t

% use K-Means.

Model label: "gMAP1"

Model name: "Model 1 Gaussian MAP"

Features: 3 8:13

Blob area threshold: 0.01

Num blobs per doc: "all"

Num restarts: 3

Num faulty starts: 1

KM iterations: "n/a" % For K-Means

EM iterations: 20

EM tolerance: 0.1

alpha: 10 % Prior on Sigma

a: 0.8 % Prior on Tau

b: 0.5 % Prior on Tau

Random init: "yes" % If "yes", we don’t

% use K-Means.

Model label: "gMAP1MRF"

Model name: "Model 1 MRF Gaussian MAP"

Features: "all"

Blob area threshold: 0.01

Num blobs per doc: "all"

Num restarts: 1

Num faulty starts: 50

KM iterations: "n/a" % For K-Means

EM iterations: 24

EM tolerance: 0.1

alpha: 10 % Prior on Sigma

a: 0.8 % Prior on Tau

b: 0.5 % Prior on Tau

phi: 0.01 % Prior on psi

sum-product: "no" % Use mean.

% Otherwise, use argmax.

Random init: "yes" % If "yes", we don’t

% use K-Means.

Okay. That’s really all you need to know for training and
testing models.

Viewing results

There are several ways you can go about inspecting
the evaluation of your model on a particular data
set. The functions you will be using most often
in the resultsbrowser subdirectory are imagebrowser,
compare models, compile stats and show stats.

One, you can inspect the evaluation anecdotally using the
resultsbrowser/imagebrowser interface. The function

6

Figure 2: The imagebrowser interface.

call is simply imagebrowser(datadir, modelname). You
can enter an empty matrix for modelname if you just want
to view the manual annotations. For more information on
the function call, check out the function help.

The imagebrowser interface is shown in Figure 2. Click
on the forward and back buttons to scroll in the images.
Also, enter an image number in the box in between the
two buttons to go to an arbitrary document in the set of
images. Also, there is a show movie feature which steps
through the images automatically. This is useful if the
images are from sequentially ordered navigation data. To
change the data set, click on the switch data set button.
The current data set is displayed on the button.

Click on a blob in the top-right image to inspect an an-
notation more closely. The manual and model annota-
tions (with their translation probabilities) are shown to
the right. The text box PR changes how many words are
displayed for each blob. The default is 1. If the image is
getting too cluttered with labels, you can hide the labels
for some of the smaller patches by increasing the hide

threshold number, to a maximum of 1 (which hides all
the annotations). Alternatively, you can change the font
size.

There’s a button to display the blob numbers along with
the annotations. The show adjacencies button replaces
the annotations with graph, where the edges represent
adjacencies between blobs. By clicking on a blob while
adjacencies are displayed, you can get more information
about spatial relations in the table on the right.

Next we look at the function compare models. A script
to call this function would look like this:

datadir = ’/project/imagetrans/data/set1’;

modelnames = {’modelA’ ’modelB’ ’modelC’};

test = ’pon’;

pr = 1;

boxplot = 1;

options = {[] boxplot};

compare_models(datadir, modelnames, test, ...

options, pr);

For more information, consult the help. The parameter
that requires immediate explanation is test. It specifies
which test to use. Currently, there are three possible tests,
each with a variable set of parameters. The parameters for
the tests are inputted to compare models after the fourth

7

Test Description

prs Error is one minus the probability that

the blob is annotated with the correct word.

The error is averaged over the number of

blobs in the document, and then over the

number of documents. There are no

parameters.

prn Error is 0 of the blob is annotated the

correct word on one of the top n most

probably predicted words, where n is

the test parameter. Otherwise, it is 0.

The error is averaged over the number of

blobs in the document, and then over the

number of documents.

pon The difference with this measure compared

to ’prn’ is that we average first over

the blobs annotated with a specific word,

then over the number of words in the label,

and then finally over the number of

documents. n is the parameter.

pos Error is one minus the probability that

the blob is annotated with the correct word.

The error is averaged first over

the blobs annotated with a specific word,

then over the number of words in the label,

and then finally over the number of

documents.

Figure 3: A description of the tests used by the

compare models function.

parameter. In this case, pr is the single parameter used
by the test pon. The tests that are available are listed in
Figure 3. It is possible to create your own test function
using the following template:

% RUN_TEST_MYTEST

% Comments go here.

err = run_test_mytest(manual_words, ...

manual_blobwords, model_words, ...

model_blobwords)

% Function body goes here.

If your test is named “mytest”, then the file stor-
ing the function should me named run test mytest.m.
manual words and model words are cell arrays contain-
ing the word tokens for the manual annotator and the
model annotator, respectively. manual blobwords is a
W1 × B × N matrix, where W1 is the total number of
word tokens in manual words, B is the maximum num-
ber of blobs in an image, N is the number of images
and each entry encodes the probability of translation.
model blobwords is a W2 × B × N matrix, were W2 is

the total number of word tokens in model words. After
these four parameters, you can add test-specific parame-
ters as you desire.

Finally, we’ll look at the functions compile stats,
show stats and some others. With these functions, you
can look into more detail the results of your model.

Use show stats(stats,trial) to view the stats returned
by compile stats. The parameter trial specifies which
trial number to display, or 0 for the averaged results.
show stats latex does the same thing, only it displays
the tables in a format amenable to Latex documents.

Use show psi(stats) to display the parameter ψ learned
from some models. Use view taus(datadir, modelname)

to display the variable weighting parameter τ , which is
useful for viewing the learned relative importance of the
features. Use the Matlab help for more information.

8

