
NOTES ON PROBABILISTIC DECODING OF

PARITY CHECK CODES

PETER CARBONETTO∗

1. Basics. The diagram given in p. 480 of [7] perhaps best summarizes our
model of a noisy channel. We start with an array of bits s = (s1, . . . , sK), where each
sk ∈ {0, 1}. This is our source message, and the length K is the “degrees of freedom.”
We encode the source message s into a vector of bits x ∈ C, where C ⊆ {0, 1}N and
N ≥ K. A member of C is called a codeword, and N is the code length. The discrete
codeword x is transformed to a continuous signal t ∈ R

N , next it is transmitted
through a noisy channel and we, on the receiving end, see the signal y ∈ R

N . The
signal y has been corrupted to some degree by noise. The relationship between the
continuous transmitted signal t and the received signal y is usually modelled by

y = t + v, (1)

where v is the noise vector. We assume the individual entries of v are independently
and identically drawn from a Normal distribution with zero mean and variance σ2.

The object is to decode the received codeword y by inferring the (unseen) original
codeword x that maximizes the posterior probability p(x |y), and then using x to
find the original message s.1 In order to accomplish this, we need to come up with
a prior probability distribution p(x) over codewords x, and a likelihood distribution
p(y |x) over received signals y given codewords x. Let’s begin by investigating a
distinguished class of codes called linear codes.

A linear code endows the set of codewords C with a special algebraic structure.
A code is linear if, whenever vectors a and b belong to C, then their sum a + b also
belongs to C.2 One way to construct a linear code is to design a matrix A with M
rows and N columns, where M ≤ N , and say that all codewords are those vectors
x ∈ {0, 1}N satisfying Ax = 0. When Aa = 0 and Ab = 0, it follows that

A(a + b) = Aa + Ab = 0. (2)

Therefore, the set C defined by C = {x ∈ {0, 1}N |Ax = 0} is a linear code. We call
A the parity check matrix.

It is easy to see how one might make use of the parity check matrix to detect and
correct errors in the received signal. Suppose we were to threshold the entries of y in
some fashion to obtain a discrete signal.3 Since the continuous signal has been subject
to some level of interference, the thresholded y may not be the same as x. Consider
the case when one of the bits is incorrect. The received word is thus y = x+e, where
e is zero everywhere except for a 1 in the ith bit. So we have

Ay = A(x + e) = Ax + Ae. (3)

∗Department of Computer Science, University of British Columbia (pcarbo@cs.ubc.ca).
1Once we know x, we can solve for s via Gaussian elimination on the generator matrix. See

Sec. 5 for more information.
2Arithmetic here is defined on Z2, the set of integers modulo 2. In this setting, addition is the

same as subtraction.
3In order to distinguish the continuous representation y from its corresponding bit vector, we

shall use the notation y. This is consistent with the notation used in [6].

1

The term Ax is 0, and the term Ae is equal to the ith column of A. Therefore, all we
have to do is compare the result Ay with all the columns of A to locate and correct
the error. In the next section, we will describe an elegant method for error correction
with arbitrary numbers of errors.

2. The probabilistic decoding problem. As mentioned in the previous sec-
tion, the objective is framed as follows: find a codeword x = (x1, . . . , xN) that maxi-
mizes the posterior

p(x |y) ∝ p(y |x) p(x). (4)

What do the prior and likelihood look like? The prior can be formulated directly from
the structure of the parity check matrix. Each row of A is a parity check: for every
row j = 1, . . . ,M , the condition

⊕

i∈N(j)

xi = 0 (5)

must hold for x to be a valid codeword. The summation in (5) is over all columns i
such that Aji = 1. The 1s in the jth row of A tell us which codeword bits participate
in the jth parity check. Now, we can interpret the parity check as a factor in a factor
graph [16], where variable nodes correspond to codeword bits. The factor associated
with the jth parity check is

fj(xN(j)) =

{

1 if
⊕

i∈N(j) xi = 0,

0 otherwise.
(6)

The prior distribution of x is thus given by

p(x) ∝
∏

j

fj(xN(j)), (7)

and resolves to 0 whenever x is not a valid codeword. The product in (7) is over all
rows j of the parity check matrix A.

In order to evaluate the likelihood factors, we need to understand how a stream
of bits x is represented by a continuous waveform t for transmission across a channel.

3. Transmission through a Gaussian channel. A proper understanding of
this subject would necessitate a course in digital communication, but a cursory pre-
sentation should be sufficient for the purpose of this monograph. We shall examine
binary phase-shift keying [12], in which each bit is represented by the sign of the
waveform: ti = a represents the 1 bit, and ti = −a represents the 0 bit. The signal
t passes through a channel with i.i.d noise, so the probability of observing y at the
other end of the channel is given by the product of terms

p(yi |xi) ∝

{

exp{ −1
2σ2 (yi + a)2} if xi = 0

exp{ −1
2σ2 (yi − a)2} if xi = 1

(8)

for every codeword bit i = 1, . . . , N . Computing the normalizing constant, we can
express the likelihood as

p(yi |xi = 1) =
1

1 + exp(−2ayi/σ2)
. (9)

The likelihood p(y |x) thus introduces a factor p(yi |xi) for every bit i.

2

4. An approximate solution to the probabilistic decoding problem.

We now have a model that provides us with the a posteriori probability p(x |y) ∝
p(y |x) p(x) of any codeword x given the observed signal y. The prior and the likeli-
hood terms are defined as products of factors. For our purposes, this can be reduced
to computing the marginal densities of the posterior, p(xi |y), for every bit i.4 And
once we know the marginals, we will then select the highest probability bits. How-
ever, computing these probabilities is rather difficult for most desirable parity check
matrices. Thus, we need a tractable method for estimating the posterior.

The best known tractable solution is to frame the inference problem (the problem
of computing the marginals of the posterior) as an optimization problem using vari-
ational methodology, then to approximate the optimization problem using a region-

based approximation [16] so we can arrive at the marginals fairly efficiently. Let’s
describe this in more detail.

Let p(x) denote the target probability distribution. It is composed from a product
of factors, so that the probability of configuration x = {x1, . . . , xN} can be written

p(x) =
1

Z

∏

C

fC(xC), (10)

where the product is over all defined factor neighbourhoods C. Each C refers to a
subset of {1, . . . , N}, so that xC represents the restriction of configuration x to the
subset C. We assume that no two factors are defined on the same subset C, so that a
factor can be uniquely identified by its neighbourhood. The normalizing constant Z is
designed to ensure that p(x) represents a valid probability; that is, the probabilities of
all configurations must sum to one. Based on the discussion in the previous sections,
it is easy to see that the posterior distribution (4) for decoding can be represented
as a product of factors, and that the normalizing constant is equal to the marginal
density, Z =

∫

p(y |x) p(x) dx.
Variational methods frame the problem of inferring statistics with respect to

a target distribution p(x) as an optimization problem by introducing a variational

distribution q(x). The goal is to come up with a variational distribution which is as
close as possible to the target. Mathematically speaking, this leads to the following
optimzation problem: find a q(x) which minimizes the variational free energy

F = −
∑

x

q(x)
∑

C

log fC(xC) +
∑

x

q(x) log q(x). (11)

The first set of terms is called the average energy, and is usually denoted with the
symbol U . The second set of terms is the negation of the entropy. We use H as short-
hand for the entropy. Clearly, the best variational distribution is one that matches
the target exactly. And at this point, the variational free energy becomes − log Z.
While this variational formulation naturally lends itself to optimization, it still in-
volves intractable sums over all possible configurations.

The strategy we will expound here, whose roots lie in the early work of Hans
Bethe [2] and Ryoichi Kikuchi [9] in statistical physics, is to approximate the in-
tractable sums in F by a linear combination of more manageable terms FR. The R
represents a “region” or “cluster” of the undirected graphical model, and is a subset
of the indices {1, . . . , N}. Bethe [2] proposed an approximation to the variational
free energy F by forcing the entropy to decompose as a product of entropy terms on

4This is a technically incorrect leap to make, but it tends to work well anyhow.

3

the sets C and singleton sets {i}. This approximation is generally referred to as the
Bethe free energy. The junction graph method is a natural generalization of the Bethe
method in which the large regions (the sets C) and the small regions (the singletons
{i}) can be chosen with greater freedom. One ordinarily uses a junction graph to
formalize these notions [1].

A region graph is a graph with directed edges and labeled vertices. Each vertex
is labeled by a region of the target factor graph. A region is defined to be a collection
of variable nodes and factor nodes, with the single restriction that if a factor belongs
to a region, then all its arguments also belong to the region. We denote a region by
the capital letter R. Depending on the context, the symbol R may alternately refer
to a collection of variable nodes, a collection of factor nodes, or a node of the region
graph. In this manner, we may use xR to denote the configuration x restricted to
the set R ⊆ {1, . . . , N}, we may use the notation C ∈ R to refer to factors C that
are members of region R, additionally qR(xR) denotes the marginal density function
defined at region R. For the purposes of this exposition, we assume that a collection
of variable nodes uniquely identifies a region; no two regions possess the exact same
set of variables.

Given a region graph, its corresponding region free energy is defined to be

F̃ =
∑

R

cRUR −
∑

R

cRHR, (12)

where the average energy UR and entropy HR of region R are, respectively,

UR = −
∑

xR

∑

C∈R

qR(xR) log fC(xC) and HR = −
∑

xR

qR(xR) log qR(xR).

We define qR(xR) to be the marginal probability defined on region R, and cR to be
the “counting” number (or “overcounting” number) for region R. If the counting
numbers are chosen well, the decomposition of the average energy is exact. On the
other hand, the entropy decomposition can only ever be an approximation.

Yedidia et al. [16] present a recipe for coming up with reasonable counting num-
bers cR for a given region graph. A good choice of numbers cR ensures that we only
count the contribution of each subset once in F̃ , and this insight the basis for the clus-

ter variation method. The important observation made by McEliece and Yildirim [11]
is that this recipe has a profound connection to results in combinatorial mathematics
and, in particular, the theory of partially ordered sets [4]. By introducing a par-

tial ordering—a relation with specific properties—on the regions, we can treat the
collection of regions as a partially ordered set (poset), where the partial ordering is
the set inclusion relation, and we can then draw the regions as vertices in a Hasse
diagram [13]. Since we have described the regions R as elements of a poset, we can
frame the choice of counting numbers as a counting problem on the poset, and use
the principle of inclusion and exclusion for partially ordered sets—widely known as
the Möbius inversion principle—to come up with the answer [4].

In most decoding problems we will encounter, fortunately, it isn’t quite this com-
plicated. That’s because most of the parity check matrices we will be working with
have the property that each pair of columns (and each pair of rows) do not have more
than one Aji = 1 in common. This in turn means that each parity check factor does
not have more than one bit in common with any other parity check factor.

Now suppose we define two sets of regions, and we denote their members by R
and S, respectively. In the first set of regions, each R contains the jth parity check

4

factor, the variable nodes i ∈ N(j) corresponding to the arguments of the jth factor,
and the likelihood factors p(yi |xi) for all i ∈ N(j). In the second set of regions, each
S contains the variable node i and the factor node corresponding to the ith likelihood
term. We set the counting numbers cR to 1 for all R. For each S = {i}, we set cS

to be equal to the number of parity checks with which the ith bit participates. A
region graph defined in this way ensures that the average energy is exact, and that
the contribution of every subset of is only counted once in F̃ . This is so because:
1) every non-empty intersection of two regions is a member of the region graph,
and 2) the counting numbers are equivalent to those obtained as a solution to the
Möbius inversion principle. It is also worth noting the region-based approximation is
equivalent to the junction graph approximation in this case, where the Rs correspond
to large regions of the junction graph, the Ss correspond to the its small regions,
or separators, and the counting numbers of the small regions are the degrees of the
member variable nodes.5 From now on, we shall restrict our attention to the junction
graph approximation in which the large regions R have counting number cR = 1, and
the small regions S = {i} have counting number cS = 1−di. The degree di of the ith
variable node is defined to be the number of 1s in the ith column of A. The junction
graph approximation to the variational free energy is given by

F̃ =
∑

R

UR +
∑

S

cSUS −
∑

R

HR −
∑

S

cSHS . (13)

Since the large regions R of the junction graph are in correspondence with the parity
checks j = 1, . . . ,M , and the small regions S are in correspondence with the bits
i = 1, . . . , N , we can expand and simplify (13) to obtain the expression

F̃ = −
∑

j

∑

xN(j)

qj(xN(j)) log fj(xN(j)) −
∑

j

∑

i∈N(j)

∑

xi

qj(xi) log gi(xi)

−
∑

i

(1 − di)
∑

xi

qi(xi) log gi(xi) +
∑

j

∑

xN(j)

qj(xN(j)) log qj(xN(j))

+
∑

i

(1 − di)
∑

xi

qi(xi) log qi(xi), (14)

where gi(xi) is shorthand for the response of the likelihood term p(yi |xi).
As we mentioned eariler, the object is to come up with a collection of marginals

qR(xR) and qi(xi) that minimizes the approximate variational free energy (14). This
is a constrained optimization problem, since the marginals must be non-negative and
sum to one. Moreover, they must be consistent with each other. The optimization
problem is to minimize (14) subject to three types of constraints: 1) the marginal
probabilities must be non-negative, 2) they must sum to one, and 3) the marginals
on neighbouring regions should agree. The constrained, nonconvex program is

minimize F̃
subject to ∀ j, xN(j), qj(xN(j)) ≥ 0 ∀ i, xi, qi(xi) ≥ 0

∀ j,
∑

xN(j)
qR(xN(j)) = 1 ∀ i,

∑

xi
qi(xi) = 1

∀ j, i ∈ N(j), xi, cji(xi) = 0,

(15)

5In general, an approximation to the variational free energy based on a proper junction graph
can only guarantee that the contribution of terms involving variable node i is not counted more
than once in F . This is a weaker guarantee than what we mentioned earlier, because it could still
happen that terms defined on an arbitrary subset of {1, . . . , N} is not counted exactly once. In this
particular case, however, the junction graph approximation harbours this stronger guarantee.

5

where the consistency constraint function is defined to be

cji(xi) =
∑

xN(j)−{i}

qj(xN(j)) − qi(xi). (16)

The sensible course of action at this point would be to solve the program (15) by
deriving the gradient ∇F̃ and Hessian ∇2F̃ , then executing a software package for
constrained, nonlinear programming such as ipopt [15]. The Hessian is diagonal, so
this solution would not seem costly. There is a major problem with this seemingly
harmless approach, however. Evaluation of the objective function F̃ requires that we
evaluate the response of the parity check factor fj(xN(j)) for every configuration of
the bits i ∈ N(j) involved in the parity check. When N(j) is large, the summations
in (14) can become extraordinarily expensive to evaluate (not to mention the large
number of entries to the gradient and Hessian we would have to keep track of!). We
will see that we can dispense of this problem by following the standard course of
action and exploit results in duality, leading to familiar sum-product updates [16].

The Lagrangian function corresponding to (15) is

L̃ = F̃ +
∑

j

γj

{
∑

xN(j)
qj(xN(j)) − 1

}

+
∑

i

γi

{
∑

xi
qi(xi) − 1

}

+
∑

j

∑

i∈N(j)

∑

xi

νji(xi)
{

qi(xi) −
∑

xN(j)−{i}
qj(xN(j))

}

, (17)

For the purposes of this exposition, we assume that marginal probabilities are strictly
positive so that their associated Lagrange multipliers vanish. Starting from the La-
grange dual function and its properties, it is possible to derive necessary conditions
for optimality, otherwise known as the conditions of Karush, Kuhn and Tucker [5].
For a candidate point to be optimal, it must minimize the Lagrangian for some point
{γ,ν}, which in turns means that the gradient of the Lagrangian with respect to the
primal variables must vanish. The partial derivatives of the Lagrangian (17) with
respect to the primal variables are given by

∂L̃

∂qj(xN(j))
= log qj(xN(j)) + 1 − log fj(xN(j)) −

∑

i∈N(j)

log gi(xi) + γj −
∑

i∈N(j)

νji(xi)(18)

∂L̃

∂qi(xi)
= (1 − di)

[

log qi(xi) + 1 − log gi(xi)
]

+ γi +
∑

j∈N(i)

νji(xi), (19)

where N(i) is the collection of parity checks with which the ith bit participates, which
is equivalent to the collection of bits participating in the corresponding parity check.
We recover the coordinate ascent equations finding by equating the partial derivatives
to zero and solving for the variables qR(xR) and qi(xi), arriving at

qj(xN(j)) ∝ exp
{

log fj(xN(j)) +
∏

i∈N(j) log gi(xi) + νji(xi)
}

qi(xi) ∝ exp
{

1
di−1

(

log gi(xi) +
∑

j∈N(i)νji(xi)
)}

.

Next, by making the substitutions

νji(xi) = log mi→j(xi) (20)

mi→j(xi) =
∏

j′∈N(i)−{j}mj′→i(xi) (21)

6

the expressions for the marginals become

qj(xN(j)) ∝ fj(xN(j)) ×
∏

i∈N(j) gi(xi)mi→j(xi) (22)

qi(xi) ∝ gi(xi) ×
∏

j∈N(i)mj→i(xi), (23)

which give us the familiar expressions for the marginal beliefs on the small and large
regions of the junction graph. The message update from the ith small region to the
jth large region is given in (21), so the remaining piece of the puzzle is the update
equation for a message passed from j to i. Starting from the identity

qi(xi) =
∑

xN(j)−i
qj(xN(j)),

then plugging equations (22) and (23) into this identity, we obtain the standard sum-
product rule

mj→i(xi) ∝
∑

xN(j)−{i}

fj(xN(j))
∏

i′∈N(j)−{i}

mi′→j(xi′). (24)

If we dispense with the marginal probabilities (22) altogether, we can almost, but
not quite, breath a little easier. We still have to deal with a potentially monstrous
summation over the configurations xN(j)−{i} in the sum-product message update (24).

With some measure of cleverness, it is possible to compute the message mj→i in
linear time with respect to the size of the parity check. To make things as simple
as possible, let’s assume that the set of bits implicated in the jth factor is N(j) =
{1, . . . , n}. Let’s introduce a random variable Zk that is defined to be the sum of the
bits from 1 to k, and we denote x1:k to be the configuration restricted to the set of
bits from 1 to k. The probability of event Zk = zk is simply given by

p(zk) =
∑

x1:k

δzk

(

⊕k

l=1 xl

)

. (25)

That is, the probability of event Zk = zk is equal to sum of the probabilities of events
in which the bits from 1 to k add up to zk. For any k, we can compute p(zk) by
induction. Clearly, p(z1) = p(x1 = z1). The probability of z2 can then be computed
according to

p(z2) = p(z2 | z1 =z2) p(z1 =z2) + p(z2 | z1 6=z2) p(z1 6=z2)

= p(x2 =0) p(z1 =z2) + p(x2 =1) p(z1 6=z2).

In general, zk is computed inductively according to the equation

p(zk) = p(xk =0) p(zk−1 =zk) + p(xk =1) p(zk−1 6=zk). (26)

Now, how can we use this to compute the sum-product message? By inspection, we
see that the following identity holds:

mj→i(xi) = p(zn =0 |xi), (27)

where the marginal probabilities p(xk) are given by the messages mk→j(xk). If it so
happens that i = n, then we have

mj→n(xn) = p(zn−1 =xn).

We now have all the ingredients to implement a practical algorithm for decoding
a received signal y. Usually, the message passing terminates when a maximum a

posteriori estimate x satisfies Ax = 0, or when a specified maximum number of
iterations is reached (in which case, we report a decoding failure).

7

5. Encoding a message. What we have described so far is a principled method
for estimating the original message given a noisy received signal. We have not yet
described how to encode the message s is the first place.

Suppose we are provided with an M × N parity check matrix A, where M ≤ N .
How can we use A to encode the original message? We need to find the corresponding
N × K systematic generator matrix G that takes a message s and transforms it into
a codeword x. The transformation in matrix notation is

x = Gs. (28)

Since x is a codeword, we should have

Ax = AGs = 0 (29)

for any message s. Note that the generator corresponding to A is not unique (see
p. 84 of [12]). The result (29) implies that

AG = 0, (30)

because a row of A must be orthogonal to every basis vector f the space of codewords
(i.e. the columns of G). Therefore, if we’ve going to find a generator matrix G
corresponding to A, it needs to satisfy (30).

Assuming the M × N matrix A has rank M , we can use the Gauss-Jordan algo-
rithm [14] to find an M × M matrix B such that

B−1A = H = [I − U] . (31)

Here, I is the M × M identity matrix and U is a matrix of height M and width
N − M . The matrix H = [I − U] serves the same role as A because Hx = 0 if and
only if Ax = 0. Amazingly, the matrix

G =

[

U
I

]

(32)

satisfies the condition (30), since A = BH and

AG = BHG = B [I − U]

[

U
I

]

= 0.

Therefore, G is a generator matrix. Under the assumption that the parity check
matrix has rank M , the width of the generator matrix is N − M , which means that
the number of degrees of freedom is given by K = N − M . The specific form (32)
is called systematic form, because the message symbols may be found explicitly and
unchanged in the codeword (see p. 85 of [12]). If we have the generator matrix is
systematic form, we can obtain an estimate of the source message s by inspecting the
bits of x.

6. The design of a parity check matrix. Biggs captures the fundamental
problem of coding theory on p. 380 of [3]:

We should like K to be reasonably large comparsed with N , in order that

a good number of different messages can be sent without too much effort.

But if there are lots of codewords, then the distance between them will be

small, and few errors can be corrected.

8

The measure of a code’s efficiency is its rate, which defined to be the number of
message bits communicated per codeword bit. It is equal to K divided by N . The
standard measure of a code’s effectiveness is the probability of bit error, also known
as the bit error rate. This is the probability that a message bit obtained by decoding
the signal y is not the same as the source message bit.

It has been shown that parity check matrices with very few 1s—that is, they are
sparse—can be extremely effective, while permitting very efficient, approximate de-
coding using variational methodology. These codes are generically called low-density

parity check codes, or alternately Gallager codes after their inventor. For more infor-
mation on constructing low-density parity check matrices, consult Gallager’s doctoral
dissertation [8] or more recent work [10].

7. Miscellany. Very often in coding theory, results are expressed by plotting
bit error rate versus the signal-to-noise ratio SNR = Eb/N0, where Eb is the energy
expended per message bit and σ2 = N0/2 is the variance and spectral density of the
noise. We can derive the variance of the noise from the signal-to-noise ratio as follows:

σ2 =
N0

2
=

Ec

2R × SNR
, (33)

where R = K/N is the coding rate, and Ec = REb is the energy expended per
codeword bit. Assuming the energy expended per coded bit is 1, we have

σ2 = (2R × SNR)−1. (34)

REFERENCES

[1] S. M. Aji and R. J. McEliece, The generalized distributive law and free energy minimization,
in Proceedings of the 39th Allerton Conference, 2001, pp. 672–681.

[2] H. A. Bethe, Statistical theory of superlattices, Proceedings of the Royal Society of London,
150 (1935), pp. 552–575.

[3] N. L. Biggs, Discrete Mathematics, Oxford University Press, revised ed., 1989.
[4] K. P. Bogart, Introductory Combinatorics, Academic Press, 2nd ed., 1990.
[5] Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge University

Press, 2004.
[6] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, 1991.
[7] B. J. Frey and D. J. C. MacKay, A revolution: belief propagation in graphs with cycles, in

Advances in Neural Information Processing Systems, vol. 10, 1997.
[8] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, 1963.
[9] R. Kikuchi, A theory of cooperative phenomena, Physical Review, 81 (1951), pp. 988–1003.

[10] D. J. C. Mackay, Good error-correcting codes based on very sparse matrices, IEEE Transac-
tions on Information Theory, 45 (1999), pp. 399–431.

[11] R. J. Mceliece and M. Yildirim, Belief propagation on partially ordered sets, in Mathematical
Systems Theory in Biology, Communications, Computation and Finance, D. Gilliam and
J. Rosenthal, eds., 2002, pp. 275–299.

[12] T. K. Moon, Error Correction Coding: mathematical methods and algorithms, Wiley-
Interscience, 2005.

[13] K. H. Rosen, Discrete Mathematics and its Applications, McGraw-Hill, 2007.
[14] G. Strang, Linear Algebra and its Applications, Academic Press, second ed., 1980.
[15] Andreas Wächter, An interior point algorithm for large-scale nonlinear optimization with

applications in process engineering, PhD thesis, 2002.
[16] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Constructing free-energy approximations and

generalized belief propagation algorithms, IEEE Transactions on Information Theory, 51
(2005), pp. 2282–2312.

9

