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1. Linear programming. There are whole books devoted to the subject of lin-
ear programming. The linear programming problem crops up in all sorts of courses,
from mathematical economics to linear algebra. This short monograph cannot pos-
sibly supplant any text or course. That being said, I find that most of the texts I
have encountered present the key results in such a way that they are stripped of all
meaning. The text leaves it up to the reader to do all the hard work in forming
a connection between proof and application. In other words, most texts on linear
programming are curiously devoid of intuition. There are, of course, exceptions [10].

I thought I’d take a few moments to give the basic intuition behind the interior-
point approach to linear programming and, in particular, interior-point methods that
take steps simultaneously in both the primal and dual variables. The 1992 article by
Gonzaga [4] appears to be a well-presented and thorough review of the subject. Many
of the derivations here follow from those presented in [7].

In its standard formulation, the linear program is stated as follows (see for instance
[9, 12]). We are provided with a vector r of length n representing linear costs, and a
collection of m constraints specified by the rows of an m× n matrix A. We’ll assume
as per the usual that the rows of A are linearly independent. The object is to

minimize rT x
subject to Ax = b,

x ≥ 0.
(1)

Many, many problems in the scientific world, economics, and even in ordinary, every-
day life can be cast as a linear program (which is not to say that it always a good
idea to do it). One interesting and silly example of a linear program is given in [11].
This problem would be easy to solve if it wasn’t for the positivity constraints on x.

A linear program is just one example of a constrained optimization problem, and
there are many important optimization problems that are much more complicated.
However, it is best to start off with an analysis of the linear program (1) since it forms
the basis for understanding more difficult optimization problems.

1.1. The Lagrange dual. We’ll start off by introducing some mathematical
machinery which will allow us to write down the dual to the linear program in standard
form. It is the dual that will help us come up with a principled method to solve (1).
For the optimization problem

minimize f(x)
subject to e(x) = 0,

c(x) ≤ 0,
(2)

with nE equality and nC inequality constraints, the Lagrangian function is

L(x, y, z) = f(x) +

nE
∑

i=1

yiei(x) +

nC
∑

i=1

zici(x), (3)
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where y is the collection of Lagrange multipliers associated with the equality con-
straints, and z is the collection of multipliers corresponding to the inequality con-
straints. I’ve chosen to write down the inequality constraints so that they are always
negative, instead of being positive in the linear program. I did it this way so that my
derivations match those in [2]. We will, however, have to be careful that we get the
correct signs on the constraints and Lagrange multipliers in all our derivations.

The Lagrange dual function is defined to be

q(y, z) ≡ inf
x

L(x, y, z), (4)

where the infimum is over all x that satisfy the equality and inequality constraints
in (3). The infimum is a generalization of the minimum; the infimum of a collection
of points is defined to be the largest number that acts as a lower bound on this
collection. We used an infimum here instead of a minimum because the Lagrangian
function might not have a minimum on the feasible set, in which case the infimum is
defined to be negative infinity [2]. From now on, in order to distinguish the original
objective from the dual objective q(y, z), we refer to f(x) as the primal objective.

A crucial property of the Lagrange dual is that when z ≥ 0, q(y, z) is always a
lower bound on the value of the primal objective f(x) at the solution x⋆. Proving
this property isn’t all that hard to do; see Sec. 5.1.3 of [2]. However, this property is
important enough that it is given a special name: weak duality.

Since the Lagrange dual is always a lower bound on the solution to the original
problem, it would make sense to try and find a point (y, z) that makes q(y, z) as large
as possible, hence offers the best lower bound. This simple realization leads to the
Lagrange dual problem:

maximize q(y, z)
subject to z ≥ 0.

(5)

Implicitly, we have an additional constraint since the bound should be non-trivial; i.e.

the infimum in q(y, z) should not be equal to negative infinity. Just as we said x is
feasible if equality and inequality constraints are satisfied, we say (y, z) is dual feasible

if z ≥ 0 and q(y, z) > −∞ are satisfied. The dual problem (5) is always a convex
optimization problem, regardless whether or not the original (primal) optimization
problem is convex, so it always has a unique solution (y⋆, z⋆). See Sec. 5.2 of [2] for
an explanation why.

These thoughts suggest that we could alternatively solve the Lagrange dual prob-
lem instead of the original problem (2). This is especially tantalizing thought since
the dual problem is convex. There are a couple of reasons why this isn’t necessarily
a good idea: one, the dual function might not be available in closed form; two, the
solution q(y⋆, z⋆) to (5) is only a lower bound on f(x⋆). However, under certain con-
ditions the lower bound is the tighest possible, meaning f(x⋆) = q(y⋆, z⋆). When this
happens, we have strong duality. Strong duality is guaranteed when we have a convex
optimization problem, and an appropriate constraint qualification (such as the lin-
ear independence constraint qualification or Slater’s condition). The proof of strong
duality under constraint qualification is not terribly straightforward. See Sec. 5.3.2
of [2] for an argument that uses the hyperplane theorem to prove strong duality under
Slater’s constraint qualification, and see Proposition 3.3.9 in [1] for a more succinct
proof that applies the Mangasarian-Fromovitz constraint qualification.

Since the Lagrange dual acts as a lower bound to the solution for any point (y, z),
it is rather obvious that the difference η(x, y, z) ≡ f(x) − q(y, z) provides an upper
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bound on the difference between the value of the objective at the current point x,
and the value of the objective at the solution x⋆. This difference is called the duality

gap. It is very useful as a principled stopping criterion, since the duality gap tells
us that our current estimate of the solution is no less accurate than the value of the
duality gap. See Sec. 5.5.1 of [2] for a way to compute an upper bound on the relative
accuracy (instead of the absolute accuracy) using the duality gap.

Now let’s see what the Lagrange dual looks like for our linear program. The
Lagrangian function of (1) is

L(x, y, z) = rT x + yT (Ax − b) − zT x. (6)

The minus sign appears here because the lower bounds x ≥ 0 must be converted to
upper bounds to fit the formulation (2). We will rewrite (6) as

L(x, y, z) = −yT b + (AT y + r − z)T x. (7)

The Lagrange dual problem for the linear program is thus

maximize q(y, z) = −yT b + infx{(A
T y + r − z)T x}

subject to z ≥ 0, q(y, z) > −∞.
(8)

The dual function involves an infimum over a linear function. The only time when a
linear function is bounded from below (or has a minimum point) is when the slope
of the function is zero. Therefore, the infimum will only be a finite number when
AT y + r − z = 0. (For general problems, a sufficient condition for having a bounded
infimum is that the slope of the Lagrangian function vanishes; i.e. ∇xL(x, y, z) = 0.)
This gives us an alternate way to express dual feasibility, and an alternate way to
express the dual optimization problem:

maximize −yT b
subject to AT y + r = z,

z ≥ 0.
(9)

While this formulation of the dual is perfectly correct, it differs slightly from many pre-
sentations of linear programming (e.g. [9, 12]). That’s because in those presentations,
a minus sign was placed in front of the equality constraint terms in the Lagrangian
function (3). For the sake of consistency, we stick to the formulation of [2].

The duality gap, meanwhile, also has a simple form. Provided that the iterate
is both primal feasible (Ax = b, x ≥ 0) and dual feasible (AT y + r = z, z ≥ 0), the
duality gap bounds the accuracy of the current estimate. It reduces to

η(x, y, z) = rT x + bT y = rT x + yT Ax = xT (AT y + r) = xT z. (10)

1.2. Optimality conditions. We now have all the ingredients we need to write
down the necessary and sufficient conditions for (x, y, z) to be the primal-dual solution
to a linear program written in standard form: the point must be primal feasible and
dual feasible, and the duality gap must vanish. Putting everything together, we have

AT y + r = z, z ≥ 0 (dual feasibility)
Ax = b, x ≥ 0 (primal feasibility)

xT z = 0 (vanishing duality gap).
(11)
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These equations are an instance of the famed Karush-Kuhn-Tucker (KKT) optimality
conditions. Since the variables x and z must be positive, the condition that the duality
gap is zero is equivalent to requiring that xizi = 0 for all i = 1, . . . , n. These nonlinear
equations are called the complementary slackness conditions.

The KKT conditions are all linear in the primal and dual variables, with the
exception of the complementary slackness conditions. A seemingly reasonable thing
to do at this point would be to form a first-order Taylor series approximation to the
optimality conditions (11) about the point (x, y, z), then solve the linear system to
obtain the primal-dual Newton search direction (∆x,∆y,∆z). This isn’t a particularly
good idea because it regularly happens that only a small step can be taken along this
so-called affine search direction before the positivity constraints are violated. A less
aggressive approach is needed: rather than attempt to eliminate the duality gap in
one go, we propose the less ambitious goal of reducing the duality gap by some factor
σ. The Newton step then becomes the solution to





0 AT −I
A 0 0
Z 0 X









∆x
∆y
∆z



 = −





AT y + r − z
Ax − b

XZ1 − ση(x,y,z)
n

1,



 (12)

where X is the matrix with x along its diagonal and zeros elsewhere, Z is the matrix
with z along its diagonal, and 1 is a vector of ones. The reason we divide the target
duality gap by n, as you might recall, is because we’ve separated the original condition
xT z = 0 into n complementary slackness conditions. This “perturbed” Newton step
forms the basis of the primal-dual interior-point method for linear programming,
minus some implementation issues. Before we enter into implementation details, it is
worth our while to step back for a moment and derive the Newton step from a very
different point of departure.

1.3. Primal-dual interior-point methods. The classic interior-point method
for constrained optimization is the barrier method. It dates back to the work of Fiacco
and McCormick [3] in the 1960s. The central idea is to introduce a barrier function
which penalizes points that are close to the boundary of the feasible set, obviating
the need for the inequality constraints. Adopting the logarithmic penalty, the barrier
subproblem for the optimization problem (2) is

minimize fµ(x) ≡ f(x) − µ
∑nC

i=1 log(−ci(x)),
subject to e(x) = 0.

(13)

The quality of the barrier approximation grows as µ approaches zero. On the other
hand, it is difficult to minimize the logarithmic barrier function when µ is small, as
its surface can vary rapidly near the boundary of the feasible set. The optimality
conditions for the equality-constrained barrier subproblem (13) are simply

∇fµ(x) = ∇f(x) +

nE
∑

i=1

yiei(x) − µ

nC
∑

i=1

∇ci(x)

ci(x)
= 0, e(x) = 0. (14)

The exciting thing is that we can connect a point satisfying these optimality conditions
to the previous discussion on duality. My claim is that for a feasible point x satisfying
the conditions (14), x is guaranteed to yield a dual point (y, z) that is dual feasible,
hence we can use our expression for the duality gap to compute a valid lower bound
on the objective at the solution x⋆.
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Suppose we were to define the variables zi ≡ −µ/ci(x). Since x is feasible, the
inequality constraints are satisfied, and so zi must be positive. Plugging zi into the
optimality conditions (14) above, we find that ∇xL(x, y, z) = 0. This result combined
with the fact that each zi is positive means that our collection of variables z must
be dual feasible (because the infimum will be finite). Furthermore, if the objective is
convex, then the gradient vanishes at a unique point, and the duality gap reduces to

η(x, y, z) = f(x) − q(y, z) = −
∑nC

i=1zici(x) = nCµ. (15)

Thus, the solution to the barrier subproblem with a logarithmic penalty function
and barrier parameter µ is within η = nCµ of the solution to the original problem.
What we have discovered here is a principled way to derive the perturbed primal-dual
Newton search direction (12): construct a sequence of barrier subproblems with an
adaptive choice of barrier parameter µ that depends on the current duality gap at
(x, y, z), and a desired reduction σ. Thus, we can replace the term ση(x, y, z)/n in (12)
with µ. This is the basic formula behind the primal-dual interior-point method.

It is generally fair to assume that the current iterate is both primal and dual
feasible, in which case the linearized primal-dual system is given by





0 AT −I
A 0 0
Z 0 X









∆x
∆y
∆z



 = −





0
0

XZ1 − µ1,



 (16)

It is easy to show that since the Newton step satisfies A∆x = 0, and by primal
feasibility Ax = b, the new point x + α∆x is primal feasible for any step size α.
Similarly, it is easy to show that the new point (y + α∆y, z + α∆z) will be dual
feasible for every choice of step length α. When the iterates are not primal and dual
feasible, we no longer possess such guarantees. Under this scenario, setting the barrier
parameter µ according to the duality gap is purely heuristic, as the quantity η(x, y, z)
is no longer the the difference between the values of the primal and dual objectives.

One important issue we haven’t touched upon is the choice of centering parameter.
The choice for σ in Mehrotra’s predictor-corrector algorithm [5, 6] is

σ =

(

ηaff(x, y, z)

η(x, y, z)

)3

, (17)

where η(x, y, z) is the duality gap at the current point (x, y, z), and ηaff(x, y, z) is the
duality gap that would be achieved if we were to follow the largest feasible step along
the affine scaling direction; i.e. using the search direction that is the solution to (16)
with µ = 0. Let me give a brief rationale behind this choice of centering parameter.
If a step along the affine scaling direction is able to make a large reduction in the
duality gap, then we might as well follow it closely and make σ small. When σ = 0,
we get the pure, unperturbed Newton or “affine scaling” step. On the other hand, if
the affine scaling direction makes very little progress, we should emphasize a centering
step, since it will set the stage for a larger reduction in the next iteration. At the
other extreme, when σ = 1, the Newton direction defines a step that solely tries to
center the iterate so that the pairwise products xizi are identical to the average of
the current duality gap, and makes no attempt to reduce the duality gap.

2. Quadratic programming. Let’s now look at the convex quadratic program
with inequality constraints stated as follows:

minimize f(x) ≡ 1
2xT Hx + rT x

subject to Ax ≤ b.
(18)
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where the m × n matrix A and the vector b of length m specify the linear inequality
constraints. Provided the n×n symmetric matrix H is positive-definite, the objective
is convex. Let’s apply the analysis above to this quadratic program. This analysis
is along the lines of what is presented in [8]. Since the direction of the inequality
matches (2), we won’t have to worry so much about getting the signs correct.

The Lagrangian function for this problem is

L(x, z) = f(x) + zT c(x) (19)

where c(x) = Ax−b is the vector-valued inequality constraint function. The Lagrange
dual function is, as before, defined to be q(z) = infx L(x, z). Since we’ve assumed the
objective is convex, the minimum of the Lagrangian function is always bounded, so
only z ≥ 0 is the only condition for dual feasibility for the convex quadratic program.
The minimum value of the Lagrangian is achieved precisely when its gradient vanishes,
and it is specified by a simple expression:

∇xL(x, z) = Hx + q + AT z = 0. (20)

Therefore, we can write the dual to the qudratic program (18) as follows:

maximize L(x, z)
subject to Hx + q + AT z = 0,

z ≥ 0.
(21)

The duality gap also has a very simple expression. It is

η(x, z) = f(x) − q(z) = −c(x)T z, (22)

which is very much similar to the duality gap xT z we had earlier for the linear program.
There is an important subtlety that needs to be mentioned here: the condition (20)
was not used in the derivation of this expression for the duality gap. However, the
expression (22) is meaningless when (20) is not satisfied, because then it will no longer
be the difference between the primal and dual objectives (the dual objective is defined
only at the maximum of the Lagrangian), and we will no longer possess a lower bound
on the value of the objective at the solution. By combining these conditions, we see
that the optimality conditions for the quadratic program are

Hx + q + AT z = 0 (infimum condition)
c(x)T z = 0 (vanishing duality gap)

Ax ≥ b, z ≥ 0 (primal and dual feasibility).
(23)

These are our KKT conditions for the convex quadratic program (18). The first
condition is often erroneously called the dual feasibility condition, but that would be
incorrect as it is not needed to ensure that the value of q(z) is finite. Therefore, I
have chosen to call it the “infimum condition” instead.

As before, we can rewrite the second equation as a collection of complementary
slackness conditions CZ1 = 0, where Z is the matrix with the Lagrange multipliers z
along its diagonal, and C is the m×m matrix with the inequality constraint function
responses c(x) = Ax − b along its diagonal. We can derive a perturbed version of
these optimality conditions by constructing the logarithmic barrier. From the previ-
ous discussion, we know that this amounts to changing the complementary slackness
conditions from CZ1 = 0 to CZ1 = −µ1, where the barrier parameter µ is equal to

µ = ση(x, z)/m = −σc(x)T z/m. (24)
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A minus sign is needed in front of the barrier parameter because the barrier parameter
will always be positive but c(x) at a feasible point x is always negative.

Forming a first-order Taylor-series expansion of the optimality conditions (23)
perturbed by µ, we get the linear system

[

H AT

ZA C

] [

∆x
∆z

]

= −

[

Hx + q + AT z
CZ1 + µ1

]

, (25)

and its solution (∆x,∆z) is the primal-dual interior-point Newton search direction.
Of course, any step (x + α∆x, z + α∆z) that we take should be checked to make sure
that it remains within the feasible set defined by the inequalities Ax ≤ b and z ≥ 0.
It is easy to show that if the current point (x, z) satisfies the infimum condition, then
any step following the Newton search direction will continue to satisfy this condition.
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