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Abstract. Data association (obtaining correspondences) is a ubiquitous
problem in computer vision. It appears when matching image features
across multiple images, matching image features to object recognition
models and matching image features to semantic concepts. In this pa-
per, we show how a wide class of data association tasks arising in com-
puter vision can be interpreted as a constrained semi-supervised learn-
ing problem. This interpretation opens up room for the development of
new, more efficient data association methods. In particular, it leads to
the formulation of a new principled probabilistic model for constrained
semi-supervised learning that accounts for uncertainty in the parameters
and missing data. By adopting an ingenious data augmentation strategy,
it becomes possible to develop an efficient MCMC algorithm where the
high-dimensional variables in the model can be sampled efficiently and di-
rectly from their posterior distributions. We demonstrate the new model
and algorithm on synthetic data and the complex problem of matching
image features to words in the image captions.
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1 Introduction

Data association is an ubiquitous problem in computer vision. It manifests itself
when matching images (eg stereo and motion data [1]), matching image fea-
tures to object recognition models [2] and matching image features to language
descriptions [3]. The data association task is commonly mapped to an unsu-
pervised probabilistic mixture model [4, 1, 5]. The parameters of this model are
typically learned with the EM algorithm or approximate variants. This approach
is fraught with difficulties. EM often gets stuck in local minima and is highly
dependent on the initial values of the parameters. Markov chain Monte Carlo
(MCMC) methods also perform poorly in this mixture model scenario [6]. The
reason for this failure is that the number of modes in the posterior distribution of
the parameters is factorial in the number of mixture components [7]. Maximisa-
tion in such a highly peaked space is a formidable task and likely to fail in high
dimensions. This is unfortunate as it is becoming clear that effective learning
techniques for computer vision have to manage many mixture components and
high dimensions.

Here, we take a new route to solve this vision problem. We cast the data
association problem as one of constrained semi-supervised learning. We argue
that it is possible to construct efficient MCMC algorithms in this new setting.
Efficiency here is a result of using a data augmentation method, first introduced
in econometrics by economics Nobel laureate Daniel McFadden [8], which enables
us to compute the distribution of the high-dimensional variables analytically.
That is, instead of sampling in high-dimensions with a Markov chain, we sample
directly from the posterior distribution of the high-dimensional variables. This,
so called Rao-Blackwellised, sampler achieves an important decrease in variance
as predicted by well known theorems from Markov chain theory [9].

Our approach is similar in spirit to the multiple instance learning paradigm
of Dietterich et al [10]. This approach is expanded in [11] where the authors
adopt support vector machines to deal with the supervised part of the model
and integer programming constraints to handle the missing labels. This optimi-
sation approach suffers from two problems. First, it is NP-hard so one has to
introduce heuristics. Second, it is an optimisation technique and as such it only
gives us a point estimate of the decision boundary. That is, it lacks a proba-
bilistic interpretation. The approach we propose here allows us to compute all
probabilities of interest and consequently we are able to obtain not only point
estimates, but also confidence measures. These measures are essential when the
data association mechanism is embedded in a meta decision problem, as is often
the case.

The problem of semi-supervised learning has received great attention in the
recent machine learning literature. In particular, very efficient kernel methods
have been proposed to attack this problem [12, 13]. Our approach, still based on
kernel expansions, favours sparse solutions. Moreover, it does not require super-
vised samples from each category and, in addition, it is probabilistic. The most
important point is that our approach allows for the introduction of constraints.
Adding constraints to existing algorithms for semi-supervised learning leads to
NP-hard problems, typically of the integer programming type as in [11].
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We introduce a coherent, fully probabilistic Bayesian model for constrained
semi-supervised learning. This enables us to account for uncertainty in both
the parameters and unknown labels in a principled manner. The model applies
to both regression and classification, but we focus on the problem of binary
classification so as to demonstrate the method in the difficult task of matching
image regions to words in the image caption [3].

Our contribution is therefore threefold: a new approach to a known com-
plex data association (correspondence) problem, a general principled probabilis-
tic model for constrained semi-supervised learning and a sophisticated blocked
MCMC algorithm to carry out the necessary computations.

2 Data association as constrained semi-supervised
learning

There are many large collections of annotated images on the web, galleries and
news agencies. Figure 1 shows a few annotated images from the Corel image
database. By, for example, segmenting the images, we can view object recogni-
tion as the process of finding the correct associations between the labels in the
caption and the image segments. Knowing the associations allows us to build
a translation model that takes as input image features and outputs the appro-
priate words; see [3] for a detailed description. A properly trained translation
model takes images (without any captions) as input and outputs images with
labelled regions.

What makes this approach feasible is that the training set of images like
the leftmost three images in Figure 1 is vast and ever increasing. On the other
hand, a supervised approach using training data like the right-most image, where
segments have been annotated, is very problematic in practice, as labelling in-
dividual segments (or other local image features) is hard and time-consuming.

This data association problem can be formulated as a mixture model similar
to the ones used in statistical machine translation. This is the approach originally
proposed in [3] and extended in [14] to handle continuous image features. The
parameters in both cases were learned with EM. The problem with this approach
is that the posterior over parameters of the mixture model has a factorial number
of modes and so EM tends to get stuck in local minima. The situation is no better
for MCMC algorithms for mixture models because of this factorial explosion of
modes [6]. This calls for a new approach.

x1 x4
x7

(x12)

x2

x6x5

x9

x10

x11

x3
x8

Fig. 1. Annotated images from the Corel database. We would like to automatically
match image regions to words in the caption. That is we don’t know the right associ-
ations (correspondences) between image features and text features.
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We can convert the data association problem to a constrained semi-supervised
learning problem. We demonstrate this with the toy example of Figure 1. Suppose
we are interested in being able to detect boats in images. We could assume that
if the word boat does not appear in the caption, then there are no boats in
the image1. In this case, we assign the label 0 to each segment in the image. If
however the word boat appears in the caption, then we know that at least one of
the segments corresponds to a boat. The problem is that we do not know which.
So we assign question marks to the labels in this image. Sometimes, we might be
fortunate and have a few segment labels as in the rightmost image of Figure 1.

By letting xi denote the feature vector corresponding to the i-th segment
and yi denote the existence of a boat, our data association problem is mapped
to the following semi-supervised binary classification task

image 1 image 2 image 3 image 4

Input x x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Labels y ? ? ? 0 0 0 0 0 0 0 0 1

Note that for the question marks, we have the constraint that at least one of
them has to be a 1 (this is what leads to the integer programming problem in
optimisation approaches). To be able to annotate all the image segments, we
need to build one classifier for each word of interest. This is sound from an
information retrieval point of view [11]. From an object recognition perspective,
we would like to adopt multicategorical classifiers. Here, we opt for a simple
solution by combining the responses of the various binary classifiers [15].

In more precise terms, given the training data D (a collection of images with
captions) the goal is then to learn the predictive distribution p (y = 1|x), where
y is a binary indicator variable that is 1 iff the new test-set image segment
represented by x is part of the concept. If we use a model with parameters θ,
the Bayesian solution is given by

p (y = 1|x) =
∫

p (y = 1|x, θ) p (θ| D) dθ.

That is, we integrate out the uncertainty of the parameters. The problem with
this theoretical solution is that the integral is intractable. To overcome this
problem, we sample θ according to p (θ| D) to obtain the following approximation

p (y = 1|x) ≈ 1
N

∑
i

p (y = 1|x, θi)

where θi is one of the samples. This approximation converges to the true solution
by the Strong Law of Large Numbers. This approach not only allows us to
compute point estimates, but also confidence intervals. In the next section, we
outline the probabilistic model.
1 Of course, this depends on how good the labels are, but as mentioned earlier, there

are many databases with very good captions; see for example www.corbis.com. So
for now we work under this assumption.
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3 Parametrization and probabilistic model

Our training data D consists of two parts, the set of blob description vectors
{x1:N} with xi ∈ Rd for i = 1, . . . , N and a set of binary labels yk. The full set of
labels includes the known and unknown labels, y , {yk, yu}. Our classification
model is as follows

Pr (yi = 1|xi, β, γ) = Φ (f (xi, β, γ)) , (1)

where Φ (u) = 1√
2π

∫ u

−∞ exp
(
−a2/2

)
da is the cumulative function of the stan-

dard Normal distribution. This is the so-called probit link. By convention, re-
searchers tend to adopt the logistic link function ϕ (u) = (1 + exp (−u))−1. How-
ever, from a Bayesian computational point of view, the probit link has many
advantages and is equally valid. Following Tam, Doucet and Kotagiri[16], the
unknown function is represented with a sparse kernel machine with kernels cen-
tered at the data points x1:N :

f (x, β, γ) = β0 +
N∑

i=1

γiβiK (x, xi) . (2)

Here β is a N-dimensional parameter vector and K is a kernel function. Typical
choices for the kernel function K are:

– Linear: K(xi, x) = ‖xi − x‖
– Cubic: K(xi, x) = ‖xi − x‖3

– Gaussian: K(xi, x) = exp
(
−λ‖xi − x‖2

)
– Sigmoidal: K(xi, x) = tanh

(
λ‖xi − x‖2

)
The last two kernels require a scale parameter λ to be chosen. The vector of
unknown binary indicator variables γ ∈ {0, 1}N is used to control the complexity
of the model. It leads to sparser solutions and updates, where the subset of active
kernels adapts to the data. This is a well studied statistical model [16].

When all the kernels are active, we can express equation (2) in matrix nota-
tion

f (xi, β) = ΨT
i β,

where Ψi denotes the i-th row of the kernel matrix

Ψ =


1 K(x1, x1) K(x1, x2) · · · K(x1, xN )
1 K(x2, x1) K(x2, x2) · · · K(x2, xN )
...

...
...

. . .
...

1 K(x2, x1) K(xN , x2) · · · K(xN , xN )

 (3)

When only a subset of kernels is active, we obtain a sparse model:

f (xi, βγ) = ΨT
γi βγ ,

where Ψγ is the matrix consisting of the columns j of Ψ where γj = 1. Ψγi then
is the i-th row of this matrix. βγ is the reduced version of β, only containing
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the coefficients for the activated kernels. In [16], this model is applied to super-
vised learning and shown to produce more accurate results than support vector
machines and other kernel machines. Here, we need to extend the model to the
more general scenario of semi-supervised learning with constraints in the labels.

We adopt a hierarchical Bayesian model [17]. We assume that each kernel
is active with probability τ , i.e. p (γ| τ) is a Bernoulli distribution. Instead of
having the user choose a fixed τ a priori, we deal with this parameter in the
Bayesian way and assign a prior p (τ) to it. This way, the value of τ is allowed
to adapt to the data. At the same time we can bias it by specifying the prior
p (τ) according to our prior belief as to what the value of τ should be. While
Tam, Doucet and Kotagiri [16] use the completely uninformative uniform prior,
we instead choose to put a conjugate Beta-prior on τ which allows the user to
exert as much control as desired over the percentage of active kernels

p (τ) =
Γ (a + b)
Γ (a) Γ (b)

τa−1(1− τ)b−1. (4)

For the choice a = b = 1.0, we get the uninformative uniform distribution. We
obtain the prior on the binary vector γ by integrating over τ

p (γ) =
∫

p (γ| τ) p (τ) dτ =
Γ (Σγ + a) Γ (N −Σγ + b)

Γ (N + a + b)
, (5)

where Σγ is the number of active kernels, i.e. the number of non zero elements
in γ.

A (maximum entropy) g-prior is placed on the coefficients β:

p (β) = N (0, δ2(ΨT
γ Ψγ)−1) (6)

where the regularisation parameter is assigned an inverse gamma prior:

p
(
δ2
)

= IG(
µ

2
,
ν

2
). (7)

This prior has two parameters µ and ν that have to be specified by the user.
One could argue that this is worse than the single parameter δ2. However, the
parameters of this hyper-prior have a much less direct influence than δ2 itself and
are therefore less critical for the performance of the algorithms [17]. Assigning
small values to these parameters results in an uninformative prior and allows δ2

to adapt to the data.

3.1 Augmented Model

We augment the probabilistic model artificially in order to obtain an analytical
expression for the posterior of the high-dimensional variables β. In particular,
we introduce the set of independent variables zi ∈ R, such that

zi = f (xi, β, γ) + nt, (8)



7

where nt
i.i.d.∼ N (0, 1). The set of augmentation variables consists of two subsets

z , {zk, zu}, one corresponding to the known labels yk and the other to the
unknown labels yu. For the labelled data, we have

p
(
zk
i

∣∣β, γ, xi

)
= N (f (xi, β, γ) , 1) = N

(
ΨT

γi βγ , 1
)
. (9)

We furthermore define

yk
i =

{
1 if zk

i > 0,
0 otherwise.

It is then easy to check that one has the required result:

Pr
(
yk

i = 1
∣∣xi, βγ , γ

)
= Pr

(
zk
i ≥ 0

∣∣xi, βγ

)
= Pr

(
ni ≥ −ΨT

γiβγ

)
= Φ

(
ΨT

γiβγ

)
.

Now, let yu
k:k+l denote the set of missing labels for a particular image (a

set of question marks as described in Section 2). The prior distribution for the
corresponding augmentation variables zu

k:k+l is then:

p(zu
k:k+l|β, γ, xi) ∝

j=k+l∏
j=k

N
(
ΨT

γj βγ , 1
) IC(zu

k:k+l) (10)

where IΩ(ω) is the set indicator function: 1 if ω ∈ Ω and 0 otherwise. Our
particular set of constraints is C , {one or more zu

j > 0}. That is, one or more
of the zu

j must be positive so that at least one of the yu are positive. This
prior is a truncated Normal distribution with the negative octant missing. The
hierarchical Bayesian model is summarised in Figure 2.

3.2 Posterior distribution

The posterior distribution follows from Bayes rule

p(β, γ, δ2, z|yk, x1:N ) ∝ p(yk|zk)p(γ)p(β|δ2)p(δ2)p(zu|β, γ, x)p(zk|β, γ, x)

The key thing to note, by looking at our graphical model, is that by condition-
ing on the 1-dimensional variables z, the model reduces to a standard linear-
Gaussian model [17]. We can as a result obtain analytical expressions for the

a

b

µ

ν
βγ δ2zτ

x

yk yu

Fig. 2. Our directed acyclic graphical model. Note that by conditioning on z, y is
independent of the model parameters.
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conditional posteriors of the high-dimensional variables β and the regularisation
parameter δ

p(β|z, x, γ, δ2) = N
(

δ2

1 + δ2

(
ΨT

γ Ψγ

)−1
ΨT

γ z,
δ2

1 + δ2

(
ΨT

γ Ψγ

)−1
)

(11)

p(δ2 | z, β, γ) = IG

(
µ + Σγ + 1

2
,
ν + βT ΨT

γ Ψγβ

2

)
(12)

where z is the vector (z1, z2, . . . , zN )T . The posterior distribution of the aug-
mentation variables zk is given by the following truncated Normal distributions:

p(zk
i |β, γ, xi, y

k
i ) ∝ p(yk

i |zk
i )p(zk

i |xi, β, γ) =


N
(
ΨT

γiβ, 1
)

I(0,+∞)

(
zk
i

)
if yk

i = 1

N
(
ΨT

γiβ, 1
)

I(−∞,0]

(
zk
i

)
if yk

i = 0
(13)

4 MCMC Computation

We need to sample from the posterior distribution p (θ| D), where θ represents
the full set of parameters. To accomplish this, we introduce a Metropolised
blocked Gibbs sampler. In short, we sample the high-dimensional parameters
β and the regularisation parameters directly from their posterior distributions
(equations (11) and (12)). It is important to note that only the components of
β associated with the active kernels need to be updated. This computation is
therefore very efficient. The γ are sampled with the efficient MCMC algorithm
described in detail in [16]. The zu are sampled from the truncated multivari-
ate Gaussian in equation (10), while the zk are sampled from the truncated
distributions given by equation (13).

To sample from the truncated Gaussian distributions, we use the specialised
routines described in [18]. These routines based on results from large deviation
theory are essential in order to achieve good acceptance rates. We found in our
experiments that the acceptance rate was satisfactory (70% to 80%).

5 Experiments

5.1 Synthetic data

In this first experiment we tested the performance of our algorithm on synthetic
data. We sampled 300 data points from a mixture model consisting of a Gaus-
sian and a surrounding ring with Gaussian cross section (see Figure 3(a)). Data
points generated by the inner Gaussian were taken to be the positive instances,
while those on the ring were assumed to be negative. The data points were then
randomly grouped into groups (representing documents) of 6 data points each.
In the given example, this resulted in 12 groups with exclusively negative data
points, and 38 groups with both positives and negative instances. This corre-
sponds to 72 data points with known negative labels and 228 data points with
unknown but constrained labels.
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We ran our algorithm on this data for 2000 samples (after a burn-in period
of 1000 samples) using uninformative priors and a sigmoidal kernel with kernel
parameter λ = 1.0. Although no data points were explicitly known to be positive
in this case, the information of the constraints was sufficient to learn a nice
distribution p (y = 1|x) as shown in Figure 3(b). Using an appropriate threshold
produces a perfect classification in this example.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) The given data points

−2
−1

0
1

2

−2

−1

0

1

2

0.4

0.5

0.6

(b) Surface plot of p (y = 1|x)

Fig. 3. Experiment with synthetic data. (a) shows the generated data points. Instances
with known negative labels are shown as filled circles whereas data points with unknown
label are represented by the + symbol. The plot in (b) visualizes the probability distri-
bution computed by our approach. The distribution obviously nicely separates positive
and negative examples and thus provides an excellent classifier.

5.2 Object recognition data set

For this experiment, we used a set of 300 annotated images from the Corel
database. The images in this set were annotated with in total 38 different words
and each image was segmented into regions using normalised cuts [19]. Each of
the regions is described by a 6-dimensional feature vector ( CIE-Lab colour, y
position in the image, boundary to area ratio and standard deviation of bright-
ness ). The data set was split into one training set containing 200 images with
2070 image regions and a test set of 100 images with 998 regions.

We compared two learning methods in this experiment. The first consisted
of a mixture of Gaussians translation model trained with EM [3, 14]. The second
is the method proposed in this paper. We adopted a vague hyper-prior for δ2

(µ = ν = 0.01). Experiments with different types of kernels showed the sigmoidal
kernel to work best for this data set. Not only did it produce better classifiers
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than linear, multi-quadratic, cubic and Gaussian kernels, it also led to numeri-
cally more stable and sparser samplers. The average number of activated kernels
per sample was between 5 and 20, depending on the learned concept.

We used both EM with the mixture model and our new constrained semi-
supervised approach to learn binary classifiers for several of the words in this
dataset. The Markov chains were run for 10,000 samples after a burn-in phase
of 10,000 samples. On a 2.6 Ghz Pentium 4, run times for this were in the range
of 5 to 10 minutes, which is perfectly acceptable in our setting.

The performance of the learned classifiers was then evaluated by comparing
their classification results for varying thresholds against a manual annotation of
the individual image regions. The ROC plots in Figure 4 show the results aver-
aged over 20 runs, plotting true positives against false positives. The plots show
that the approach proposed in this paper yields significantly better classification
performance than the EM mixture method. Given the relative simple features
used and the small size of the data set, the performance is remarkably good.
Figure 4(b) shows that the classifiers learned using the proposed approach gen-
eralize fairly well even where the EM mixture approach fails due to overfitting
(look at the results for the concept ’space’ for an example).

Figure 5 illustrates the dramatically higher consistency across runs of the
algorithm proposed in this paper as compared to the EM algorithm for the
mixture model. The error bars indicate the standard deviation of the ROC plots
across the 20 runs. The large amount of variation indicates that the EM got stuck
in local minima on several runs. While with the Corel data set this problem arose
only for some of the categories, in larger and higher dimensional data sets, local
minima are known to become a huge problem for EM.

Finally, in Figure 6 we show some examples of the classifications generated by
the two algorithms for 3 different images containing polar bears. In order to get
a fair comparison of the ’polarbear’ classifiers learned by the two approaches, we
chose the thresholds so that both classifiers would produce 30 positive instances
on the full test-set (which contains 27 patches manually labelled as ’polarbear’).
The MCMC based approach presented in this paper manages to correctly classify
the polar bears in the first two images while the mixture model trained with EM
fails to do so. In the third example, both classifiers mistake the ice for the
bear. This demonstrates a general problem in such data association tasks. If two
concepts (like in this case polar bears and ice) appear together in all example
documents, it can be very hard or even impossible to disambiguate them. A
manually labelled example (such as in the rightmost image in Figure 1) could
be of great value in such situations. The approach proposed in this paper can
naturally handle such explicitly given associations (although none were used in
the experiments presented here).
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Fig. 4. ROC plots measuring the classification performance on image regions from
the Corel image dataset of both the proposed algorithm (solid line) and the EM
mixture algorithm (dashed line), averaged over 20 runs. The x axis measures
negatives falsely classified as positives

actual negatives
while the y axis corresponds to correctly classified positives

actual positives
.

The plots are generated by using the learned probabilistic classifiers with varying
thresholds and allow to compare the classifiers independent of a chosen fixed threshold
value. The performance on the test set is remarkable considering that the algorithm
only has access to simple image features (and no text in any form).
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Fig. 5. ROC plots (as in Figure 4) for the annotation ’sky’ . The average performance of
our proposed approach is visualized by the solid line, that of the EM mixture algorithm
by the dashed line. The error bars represent the standard deviation across 20 runs. It
is clear from the plots that our proposed algorithm is more reliable and stable.

Fig. 6. Polar bear recognition results on three example images obtained with our con-
strained semi-supervised approach trained with MCMC and the mixture model trained
with EM. The approach presented in this paper yields better results than the EM mix-
ture model. As polar bears and ice appear together in all training images, it can be
very hard to differentiate between them, as the last example illustrates.
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