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The snooker algorithm and its more general counterpart, adaptive direction sampling, were
devised in order to alleviate some of the inherent problems of the Gibbs sampler[Gilks et al.,
1994]; namely, that it can be slow to converge even in unimodal situations.Gilks et al. have
some nice figures illustrating this. The idea behind the snooker algorithm was to keep score
of a population of samples that would then help each other move effectively in regions of
high density. In other words, the algorithm maintains a series of Markov chains that interact
through “snooker moves”. From this brief description, it seems like a rather obvious forebear
to the family of methods known as population Monte Carlo[Liang and Wong, 2001], the only
novelty being that parallel Markov chains are drawn from different, but related, densities.
Most commonly, these densities are related through a “temperature ladder”. Even though
Roberts and Gilks[1994] consider a less general setting, the snooker algorithm is equally
valid in population Monte Carlo. In fact, it would be fair to say that it is a key ingredient in
the success of population Monte Carlo, because it can push a chain in the direction of another
chain (unlike the exchange move) while maintaining reversibility. However, it is also a subtle
exposition of the beauty (and danger) of measure theory, and due to its popularity, it is worth
taking the time to make sure we have a proper understanding of its inner workings.

Rather than a single chain, we maintain a set of pointsx ≡ {x1, x2, . . . , xn} representing
states following the distribution of interestπ(x). The first step in the snooker algorithm
uniformly chooses a pointxa from the family ofn samples that will act as ananchor, and
anotherxc called the current point. Here the analogy to snooker (or pool) comes into play.
The anchor pointxa is the cue ball, and the current pointxc is the “object ball” (in pool, it
would be either a solid or a stripe, and in snooker it is the red ball). WhileRoberts and Gilks
do admit that this analogy can only be taken so far, it is still helpful to see the snooker move
as hitting the object ball along a line in the direction of the cue ball. The distance the ball
travels is the random variableu, and it drawn from the density proportional to

π(xc + u(xa − xc))|1− u|d−1, (1)

whered is the dimension of the sample space (it’s assumed that the samples are drawn from
Rd so that we can conveniently work with Lebesgue measures1). Then the last step is to set
the new valueyc of thecth Markov chain to

yc = xc + u(xa − xc).

All this is, again, illustrated quite nicely with figures in[Gilks et al., 1994].

1The Lebesgue measure corresponds to the length of the interval. Ifµ(4x) is the Lebesgue measure with
respecet to some interval4x, thenµ(4x) = 4x. While seemingly natural, the construction of the Lebesgue
measure is not trivial[Pollard, 2002].
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However, the snooker algorithm opens up a slew of questions, such as: what to do if we
can’t sample from the density given by (1)? and where does the term|1 − u|d−1 come from
anyway? It turns out that answering the second question will help us in answering the first.

One surefire way to check the validity of a Markov chain is to check the reversibility
condition (also called “detailed balance”), which requires∫∫

K(dy |x) π(dx) =

∫∫
K(dx | y) π(dy) (2)

for some transition kernelK. If the transition kernel satisfies (2), thenπ(dx) is the invariant
density of K(dx | y) [Chib and Greenberg, 1995].2 Things become considerably more
complicated with the snooker algorithm because we generate a random variableu, and then
deterministically set the new valueyc according tou, so the kernel looks something like
K(du |xc). xc is now a function of the random drawu. What we need is achange of variables.

Recall the Change of Variables Theorem from calculus (see for example[Marsden and
Tromba, 1999]), which states that∫∫

D

f(x, y) dx dy =

∫∫
D?

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv

assuming the transformationT (u, v) = (x(u, v), y(u, v)) from the setD? to the setD is C1

continuous. The determinant of the Jacobian is given by∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ ≡
∣∣∣∣∣ ∂x

∂u
∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣
This is the 2-d version theorem, but it extends to multivariate calculus in a similar manner.

Following the change of variables theorem and assuming Lebesgue measures from here
on in, we can restate the detailed balance condition (2) for the snooker algorithm as∫∫

K(u′ | y) π(y) dy du′ =

∫∫
K(u |x) π(dx)

∣∣∣∣∂(y, u′)

∂(x, u)

∣∣∣∣ dx du, (3)

such thatx ≡ xc andy ≡ yc.3 However, a curious thing happens if we evaluate the Jacobian
determinant in (3). The new state is given by the equationy(x, u) = x + u(xa − x), so the
partial derivatives ofy are

∂y

∂x
= (1− u)Id,

∂y

∂u
= xa − x

whereId is thed × d identity matrix (rememberx, y andxa are vectors inRd). The move
in reverse isx = y + v(xa − y) for some step lengthv ∈ R. The step lengthv in the
reverse move can be determined by simple geometry: we need to move one unit to go back
to the anchor fromy, and in order to go way back tox we need to move a little bit more,
u′ = u/(u − 1). You can check this by substitutingy into the reverse snooker move. Its

2There are other ways to check the invariant distribution of a Markov transition kernel, but they tend to
be difficult. Time reversibility does not guarantee other important properties of a Markov chain, such as
irreducibility.
3For a more rigorous and elegant exposition of the detailed balance equation, check out[Green, 2003].
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Figure 1. Density functionK(du |x) whenx ∈ R2. u0 andu1 are bounds on the step size.

derivative is∂u′/∂u = (1 − u)−2. Everything is accounted for, so the determinant of the
Jacobian is ∣∣∣∣∣ ∂y

∂x
∂y
∂u

∂u′

∂x
∂u′

∂u

∣∣∣∣∣ =

∣∣∣∣∣ (1− u)Id xa − x

0 0 · · · 0 (1− u)−2

∣∣∣∣∣ = ±|1− u|d−2 (4)

Since eachdx du refers to the area of a small rectangle, its transformed counterpart|J |dx′du′

must also be an area, hence|J | must be positive. When a matrix is upper triangular, the
determinant is the product of the entries on the diagonal. However, (4) is not what we wanted,
sinceRoberts and Gilksadjust the proposal density with|1− u|d−1! Unintuitively, the kernel

K(u |x, xa) =
π(x + u(xa − x))|1− u|d−1∫

π(x + u∗(xa − x))|1− u∗|d−1du∗ . (5)

indeed has invariant distributionπ(x). Roberts and Gilks[1994] show that the detailed
balance equation (3) holds for this particular choice of kernel. While they claim the proof
is straightforward, it is rather arduous, so we won’t repeat it here.

Let’s run a little experiment to verify these results. We use the example4 suggested
in [Gilks et al., 1994]: assuming a uniform densityπ(x) on the unit circleD ≡ {x ∈
R2 s.t.‖x‖ ≤ 1}, a valid Markov chain should explore an inner circle of radius1/2 a quarter
of the time, since (area of outer circle)/(area of inner circle)= 4. We compare two snooker
algorithms with and without the correction term|1−u|. We setn = 25 and generate a Markov
chain of length 5000. The one-dimensional densityK(u |x) = |1 − u| looks something like
the drawing in Fig.1. See Ch. 2 in[Devroye, 1986] for hints on how to simulate this density.

After running the experiment, the uncorrected snooker algorithm gets a ratio of 2.85, far
off the mark, while the corrected version gets 4.02. The density plot in Fig.2 shows why the
first algorithm fails: it spends an inordinate amount of time near the centre of the circle.

In most situations it is unrealistic to assume that we can draw samples from (5), so we
explore a third option using the Metropolis-Hastings algorithm[Robert and Casella, 2004].
Via the “trans-dimensional” framework formalized byGreen[2003], the Metropolis-Hastings
acceptance probability under the change of variables (3) is

A(x, y) = min

{
1,

π(y) q(u′ | y)

π(x) q(u |x)

∣∣∣∣∂(y, u′)

∂(x, u)

∣∣∣∣} ,

4The explanation of this example given in[Gilks et al., 1994] could be misleading. The authors seem to justify
the presence of the correction term since the kernel density becomes the same as the target density. However,
one could imagine adding a small bump to the regionD that invalidates such an line of thinking.
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Figure 2. Density plots comparing three different MCMC algorithms:(left) the snooker transition
kernel without the correction term,(middle)the snooker kernel with the correction term,(right) and

Metropolis-Hastings. The estimated density in the first plot is not uniform.

whereq(u |x) is the probability of proposing step sizeu. Since we have a uniform distribution,
π(y) andπ(x) cancel. With a uniform proposal, the ratio of the proposals in the forward and
backward directions is equal ratio of their normalizing constants,

q(u′ | y)

q(u |x)
=

u1 − u0

u′
1 − u′

0

.

Refer to Fig.1 to see why. Here, the Jacobian is the same as usual,|1−u|d−2. But wait! How
can the Metropolis-Hastings step have a different correction term than the snooker move?
And that means in our experiment, whered = 2, the Jacobian disappears from the acceptance
probability! These are all valid observations, but Fig.2 demonstrates that the Metropolis-
Hastings algorithm we have derived here is correct. In our trial run, the estimated ratio was
4.02. Note that if we used the other correction term, we would get the wrong result.

The lesson to be learned here is that a correct application of the change of variables
theorem to MCMC is not an easy task and requires some familiarity with measure theory.
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