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Abstract

We explore the extent to which we can exploit interest point detectors for representing and recog-
nising classes of objects. Detectors propose sparse sets of candidate regions based on local salience and
stability criteria. However, local selection does not take into account discrimination reliability across
instances in the same object class, so we realise selection by learning from weakly supervised data in
the form of images paired with their captions. Through experiments on a wide variety of object classes
and detectors, we show that modeling object recognition as a constrained data association problem and
learning the Bayesian way by integrating over multiple hypotheses leads to sparse classifiers that outper-
form contemporary methods. Moreover, our learned representations based on local features leave little
room for improvement on standard image databases, so we propose new data sets to corroborate models
for general object recognition.

1 Introduction

The proliferation of methods for extracting and describing salient and repeatable features [14, 16, 21, 22, 24]
combined with recent advances in machine learning has fostered new and robust representations of object
classes [1, 9, 29]. It is widely appreciated that local features are generally inadequate for identifying and
locating objects in scenes (a person is not just an elbow!), and there has been some success in learning princi-
pled representations of relations between parts [11] and global context [5, 28]. However, we believe it is still
of general interest to explore the extent to which independent parts can function as a basis for robust object
recognition. In this paper, we show that significant improvements on state-of-the-art local feature recog-
nition systems can be achieved by adopting principled probabilistic models and semi-supervised Bayesian
learning techniques for automatically selecting and combining features from multiple local detectors. By
selecting sparse sets of discriminative scale-invariant features, our representations accurately recognise ob-
jects found in a wide variety of scenes at different poses and scales (see Fig. 1 for some examples). What’s
more, we learn with very little supervision from the user.

The first step in our object recognition approach is to obtain a set of local a priori salient regions of
the scene. The original motivation for local interest regions was to provide a stable basis for recognition of
objects at varying viewpoints. Local features bring tolerance to clutter, occlusions and deformations. Some
of the best examples can be found in [12], since the authors demonstrate the application of local features
to object matching at widely disparate locations, even in the presence of clutter. Good detectors extract a
sparse set of interest regions without relinquishing information content of the scene, and select the same
regions when observed at different viewpoints and scales.

In current literature, there are many definitions as to what constitutes a good scale-covariant region,
predicated on maximising disparate criteria. For example, the Harris-Laplace detector [24] selects image
regions that are locally precise to translation (corners). Kadir and Brady [14] hypothesize that salient regions
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Figure 1: Example car images. Note that there is no image that contains only cars, and that car size varies markedly.

correspond to local maximums of complexity (or entropy). Interest point detectors were originally designed
for object matching and wide baseline stereo, not for detecting semantic categories of objects. However,
recent work has shown that interest regions work well for general recognition [9, 11, 29]. In this paper, we
compare the ability of detectors to propose good features for recognition. We also expect that using multiple
detectors will provide complementary information, hence improve recognition, a hypothesis we examine
experimentally.

Interest point detectors extract regions based on local information, which is not enough to determine
whether or not they are genuinely useful for recognising classes of objects. We need to learn which features
are most discriminative based on some form of supervision from the user. Complete supervision requires
the user to label individual features by segmenting the object from the background. Not only is this a
time-consuming and equivocal task, since people tend to segment scenes differently, it also inhibits us from
exploiting large quantities of captioned images available on the Internet (in the form of news photos, for
example [27]). Rather, we request image labels which indicate the presence or absence of an object in each
scene. For recognition of cars, the training data consists of positively labeled images containing cars, and
negative images without cars (see Fig. 1). When an image is labeled negative, we assume no car is present
in the scene and, hence, the labels of the features are set to the negative class. Otherwise, when an image
contains at least one car, we do not know whether individual points correspond to car or background, so
learning implicates determining the feature labels. We call this approach semi-supervised learning by data
association. Each label is a binary variable that determines whether or not a feature belongs to the object.
Since the training data does not contain any positively labeled regions, we introduce label constraints to
learn which features belong to cars. The constraints introduce a new set of parameters, but we show that
our model’s performance is reasonably insensitive to these parameters, and in fact performs quite well with
weak constraints. Note we can achieve multi-category classification by combining responses from multiple
binary classifiers [31].

One might be skeptical that one can successfully learn to recognise objects in scenes from such weakly
labeled data, given the high dimension of the features, the wide variability exhibited in the training scenes,
and the fact that there are often as many as a thousand unlabeled points per image! Recent publications
demonstrate good performance in similar but less ambitious tasks by using statistical translation mod-
els [5, 6, 10], support vector machines [2, 3] and sparse Bayesian kernel machines [15]. Other publications
use captioned images in order to learn representations of objects [1, 9, 11], but none of them explicitly
perform data association. Instead, they treat unlabeled background features as noise (in other words, an
inconvenience). While difficult to verify independently, we argue that variable selection is more effective
when explicitly modeling the classification of data points, because it allows the model to exploit unlabeled
background features.

We employ an augmented Bayesian classification model with an efficient Markov Chain Monte Carlo
(MCMC) algorithm [15] to simultaneously learn the unobserved labels and select a sparse object class rep-
resentation from the extracted high-dimensional descriptors. We introduce a generalised Gibbs sampler to
explore the space of labels that satisfy the constraints. Bayesian learning comprehends approximation of
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the posterior distribution through integration of multiple hypotheses, not only a crucial ingredient for robust
performance in noisy environments, but also resolves sensitivity to initialisation. Expectation Maximisa-
tion or other data augmentation gradient descent methods approximate the distribution with a single mode,
leading to a misrepresentation the true model posterior. For practical MCMC exploration of the posterior’s
modes, however, the posterior must be sufficiently peaked. This consideration exposes a major problem with
mixture models — motivating a Bayesian kernel model — since the number of modes explodes factorially
relative to the number of components [7]. An additional advantage over cited methods is that we do not need
to reduce the dimension of the descriptors through unsupervised techniques, such as vector quantization or
principal component analysis, which may purge valuable information.

The speed at which our blocked Gibbs sampler explores the space of likely solutions is critical to success
of the algorithm. We improve our MCMC algorithm by introducing a latent parameter which decouples
highly correlated variables and thus leads to improved convergence, as suggested in [19]. Experiments
on large data sets indicate that the proposed parameter expanded and blocked Gibbs sampler converges
to posterior regions of high probability after a few thousand iterations. The main computational curse
harboured by our MCMC algorithm is one shared with all kernel machine methods: learning complexity is
O(N2), where N is the number of data points in the training set. Since our experiment data often includes
hundreds of thousands of points in high dimensions, a theme in this article and in future work is reducing
the expense of Bayesian learning.

The following section outlines the Bayesian model for semi-supervised classification. Sec. 3 details how
we design a blocked Gibbs sampler to resolve model learning. In Sec. 4, we describe our implementation
of existing vision techniques for the extraction and representation of candidate features. Finally, we present
experimental results on object recognition tasks in Sec. 5 and offer conclusions in Sec. 6.

2 Model Specification

The training data consists of the set of labeled images, or documents, d = {d1, d2, . . . , dD}. We represent
image dj by a set of feature vectors {xi | i ∈ dj}, denoting the entire set of N training features by x ,

{x1, x2, . . . , xN}. We connote an observed label by yk
i and an unknown label by yu

i , where yi ∈ {0, 1}.
When the image is labeled as being negative, the labels of the points are observed to be yk

i = 0. When
a document label is positive, we sample the labels yu

i keeping in mind some additional constraints on the
number of labels per class. Label constraints can play a crucial role in learning the unknown labels, most
notably when we do not have any known labels of a certain class, such as when all the training images
positive images also possess feature points from other objects (e.g. see Fig. 1). We define n0 to be the
constraint on the minimum number of negative points in an unlabeled document, and n1 to be the minimum
number of positively classified points.

We adopt a probit link classifier

yi =

{
1 if f(xi, β, γ) > 0
0 otherwise.

(2.1)

with f(xi, β, γ) specified below. By convention, researchers tend to adopt a logistic (sigmoidal) link func-
tion, but from a Bayesian computational point of view, the probit link has many advantages and is equally
valid. Following Tham et al. [30], the unknown function is a sparse kernel machine:

f(xi, β, γ) = β0 +
K∑

k=1

γkβkψ(xi, xk), (2.2)

where ψ denotes the kernel function and K is the number of kernels. Usually we assign the kernels to
be the set of data points, but we keep the notation separate to retain generality of the model. To avoid
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confusion, we subscript all data points with i and all kernel centres with k. We use the Gaussian kernel
ψ(xi, xk) = exp(−λ(xi − xk)

2), but other choices are possible. As with all kernel methods, successful
classification depends on a good choice on the scale, or bandwidth, λ.

The sparsity of support vectors machines comes directly as a result of the objective function. Such is
not the case in the Bayesian framework. We artificially introduce sparsity through a set of binary variables,
γ , [γ1, γ2, . . . , γN ], that are set to 1 when the respective kernel centres are active, and otherwise they are
0. We denote the vector of regression coefficients by β , [β0, β1, . . . , βN ]T .

By adopting a set of one-dimensional independent variables z , {z1, z2, . . . , zN} with distribution

p(zi | γ, β, xi) = N (Ψγiβ, 1), (2.3)

we can analytically compute the posterior of the high-dimensional coefficients β within the standard linear-
Gaussian model, a strategy first introduced by Nobel Laureate Daniel McFadden [23]. Ψγ is the N × K
kernel response matrix with zeroed columns corresponding to inactive entries of γ. Ψi denotes the ith row
of the kernel response matrix, and is given by

Ψi ,
[
ψ(xi, x1) ψ(xi, x2) . . . ψ(xi, xK)

]
.

We follow a hierarchical Bayesian strategy, where the unknown parameters and labels are drawn from
appropriate prior distributions. The intuition behind this hierarchical approach is that by increasing the
levels of inference, we can make the higher level priors increasingly more diffuse. That is, we avoid having
to specify sensitive parameters and, therefore, are more likely to obtain results that are independent of
parameter tuning. We assume the regression coefficients are normally distributed with zero mean, and
covariance S scaled by learned parameter δ2:

p(β | γ, δ2) = N (β | 0, δ2Sγ). (2.4)

At this point, we leave the choice of S open and later we derive results using specific choices for the
prior covariance term. In the future, we would like to learn a parameterised covariance over the regression
coefficients, such as the Relevance Vector Machine [31] which learns a weight for every βk. Sγ refers to the
covariance matrix whereby the elements of a row and column corresponding to an inactive kernel k is set to
0, and correspondingly the βk is shrunk to zero. We assign an inverse Gamma to the scale parameter δ2,

p(δ2 |µ, ν) = IG(δ2 | µ
2 ,

ν
2 ). (2.5)

µ, ν are fixed hyperparameters typically set to near-uninformative values.
Each γk follows a Bernoulli distribution with success rate τ ∈ [0, 1]:

p(γ | τ) = τΣγ(1− τ)K−Σγ , (2.6)

where we define Σγ ,
∑K

k=1 γk to be the number of active kernels. Rather than fix the success rate, we
have τ follow a Beta distribution with parameters a, b ≥ 1. This lets the model to adapt to the data while
allowing the user some control over the prior. We integrate out the nuisance parameter τ to obtain the prior

p(γ | a, b) =

∫ 1

0
p(γ | τ) p(τ | a, b) dτ

∝

∫ 1

0
τΣγ+a−1 (1− τ)K−Σγ+b−1 dτ

=
Γ(Σγ + a) Γ(K − Σγ + b)

Γ(K + a+ b)
. (2.7)
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Figure 2: The directed graphical representation of the semi-supervised classification model. Shaded nodes are ob-
served and square nodes are fixed hyperparameters. We do not show the dependencies between the yu

i ’s.

Small values of the mean a/(a+ b) skews our prior belief towards a sparse model. The term a+ b controls
our confidence in such a prior. By setting b� a on large data sets, we can initialise the Gibbs sampler to a
feasible (small) number of active kernels.

The regression coefficients zu
i in document dj are not independent of each other, so we need to rectify

(2.3) with the joint expression

p({zu
i } | γ, β, {xi}) ∝

∏

i

N (zu
i |Ψγiβ, 1) IC0({z

u
i }) IC1({z

u
i }) such that i ∈ dj , (2.8)

and where C0 is the set of assignments to yu
i (and accordingly zu

i ) that obey the negative labels constraint
n0, C1 is the set of assignments to yu

i that satisfy the constraint on the minimum number of positive labels
n1, and IΩ(ω) is the set indicator function: 1 if ω ∈ Ω, and 0 otherwise.

In summary, the fixed parameters of the model are {λ, a, b, µ, ν, n0, n1}, the model parameters we retain
for predictions are θ , {γ, β} and the learned nuisance parameters are {δ2, τ}. The directed graphical
representation of the hierarchical model is shown in Fig. 2.

3 Model Computation

The classification objective is to estimate the label yN+1 of a new unseen point xN+1 given the training data,

p(yN+1 = 1 |xN+1, x, y
k) =

∫
p(yN+1 = 1 |xN+1, θ) p(θ |x, y

k) dθ. (3.1a)

The integral is intractable, so we approximate (3.1a) by

p(yN+1 = 1 |xN+1, x, y
k) ≈

1

ns

ns∑

s =1

p
(
yN+1 = 1 |xN+1, θ

(s)
)

= 1−
1

ns

ns∑

s = 1

Φ
(
−Ψγ(s)

N+1
β(s)

)
, (3.1b)

where ns is the number of samples generated, θ is the set of parameters that directly influence prediction,
Φ(·) is the univariate Normal cumulative density function, and each sample θ(s) = {γ(s), β(s)} follows the
posterior p(θ |x, yk). We spend the rest of this section designing an MCMC algorithm that approximates the
posterior distribution. Since the algorithm is quite involved, we break up the derivation into several sections.
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In Sec. 3.1, we derive the blocked Gibbs sampler, with the exception of the sampler for γ, left to Sec. 3.3
since it is an elaborate step. Sec. 3.2 improves upon the expected convergence rate of the Gibbs sampler
through introduction of an expansion parameter.

3.1 The Blocked Gibbs sampler

Kück et al. [15] develop an MCMC algorithm for sampling from the posterior by augmenting the original
blocked Gibbs sampler [30] to the data association scenario. As in [15], we sample the high-dimensional
parameters β and the regularisation parameters directly from their posterior distributions.

If two variables are highly correlated, an ordinary Gibbs sampler will slowly navigate through the joint
space because it samples from the full conditional distributions. We will see shortly that we can analytically
derive the joint of γ and β, resulting in so-called “blocked” moves which converge faster than a Markov
chain derived from the full conditionals [18]. We factorise the joint conditional of the regression coefficients
and variable selection parameters as

p(β, γ | δ2, a, b, x, z) = p(β | γ, δ2, z, x) p(γ | a, b, δ2, z, x). (3.2)

We obtain β from the conditional posterior,

p(β | γ, δ2, z, x) = N
(
β
∣∣QγΨT

γ Z,Qγ

)
. (3.3)

where Q , (ΨT Ψ + (δ2S)−1)−1. See Sec. C.1 for the derivation. Beware that the order of matrix multi-
plication implied in (3.3) is not efficient. In fact, the time complexity for sampling β is O(K2) by taking
advantage of values previously computed during sampling of the γ parameter (see Sec. 3.3). We leave the
details for sampling γ to Sec. 3.3.

We can sample the zk
i ’s easily since they are independent of each other. Using Bayes’ theorem, the

posterior distribution for each zk
i is given by

p(zk
i | y

k
i , γ, β, xi) ∝ p(yk

i | z
k
i ) p(zk

i | γ, β, xi)

=

{
N (Ψγiβ, 1) I(0,+∞)(z

k
i ) if yk

i = 1

N (Ψγiβ, 1) I(−∞,0](z
k
i ) otherwise.

(3.4)

Sampling the zu
i ’s is not quite as simple because the joint posterior does not factorise. While [15] use

rejection sampling to sample the unknown labels subject to the constraints, we adopt a more efficient MCMC
scheme and sample from the full conditionals in each document:

p(zu
i | {z

u
6=i}, γ, β, xi) =





N (Ψγiβ, 1) I(0,+∞)(z
u
i ) if IC1({z

u
6=i}) = 0

N (Ψγiβ, 1) I(−∞,0](z
u
i ) if IC0({z

u
6=i}) = 0

N (Ψγiβ, 1) otherwise,
(3.5)

such that i ∈ d, and 6= i is defined to be the set {i′ | i′ 6= i and i′ ∈ d}. Note that C0 and C1 are never both
unsatisfied at the same time.

We sample the regression coefficients scale δ2 from the conditional posterior

p(δ2 | γ, β, µ, ν) ∝ p(β | γ, δ2) p(δ2 |µ, ν)

= IG
(

1
2(µ+ Σγ), 1

2

(
ν + βTS−1

γ β
))
. (3.6)
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3.2 Parameter expansion using an inverse Gamma prior

The convergence rate of the Gibbs sampler suffers from high correlation between parameter β and the latent
variables z [18]. We introduce an auxiliary variable α which overparameterizes the model by scaling z, but
also increases the variance of β given z, leading to larger transitions in the Markov chain. We define the
transformation on zi by tα = zi/α, and the according Jacobian is Jα(z) = det{∂tα(zi)/∂zi} = α−N .
Liu et al. [19] suggest placing an improper Haar prior on α since it is optimal for convergence. In practice,
however, the Haar prior tends to be unstable. An alternative is the inverse Gamma prior, such that α2 ∼
IG(µα

2 ,
να

2 ). It achieves improved an convergence rate while allowing the user to tune µα and να for stability.
From the results derived in Sec. C.2, the parameter expanded Gibbs sampler for β and z consists of the

following steps:

1 Draw z ∼ p( · | y, γ, β, xi) B See equations 3.4 and 3.5.
2 Draw α2

0 ∼ p( · |µα, να) B See equation 3.7.
3 Draw α2 ∼ p( · |α0z, γ, β, µα, να) B See equation C.4.
4 z′ ←

√
α0/α× z

5 Draw β ∼ p( · | γ, δ2, z′, x) B See equation 3.3.

The sampling distribution for α2 in Step 3 can be computed in time O(K3) by using previously computed
values, as for β. We omit the other Gibbs sampler steps since they are not affected by the inclusion of the
expansion parameter. To sample α0 from the prior distribution p(α |µα, να), we note that

p(α |µα, να) ∝ IG
(µα+1

2 , να

2

)
× dα2

dα . (3.7)

3.3 Sampling the variable selection parameter

Exact sampling from the γ posterior is impractical because it requires computation of the 2K possible
assignments of γ. We elaborate on an alternative first proposed in [30]. It is essentially a Gibbs sam-
pler implemented using a Metropolis-Hastings (M-H) proposal for more efficient computation. While the
Metropolised Gibbs sampler achieves satisfactory acceptance rates, its complexity is still O(NK 2), since
it has to cycle through all the K kernels in the worst case. It is worth our while to tune computation to the
choice of S, so we assume a stabilised g-prior S = (ΨT Ψ+ εIK)−1, where IK is theK×K identity matrix
and ε is a positive number generally chosen to be much smaller than the values contained in the Gram matrix
ΨT Ψ. The stabilisation term helps maintain a prior covariance with full rank.

We observe that sampling from the posterior of γ is impractical, but it is possible to sample each γk from
its full conditional — that is, the distribution with all the other kernel centres fixed. The key observation
made by Tham [30] is that we can improve computation by formulating each Gibbs draw as a Metropolis-
Hastings step [17]. By manipulating some of the matrix computation, we present here an algorithm with
complexity O(NK2) with K ≤ N , instead of O(K2(N + K2)) assumed by naively multiplying and
inverting matrices. On our data sets, this gives us significant computational savings.

The main idea behind the Metropolis-Hastings algorithm is to sample a candidate value from a pro-
posal distribution q(γ? | γ(i)), where we denote the ith sample with the superscript (i), and then accept the
candidate γ(i+1) = γ? with probability A(γ(i), γ?). Otherwise, the new sample remains unchanged and
γ(i+1) =γ(i). The acceptance probability is given by

A(γ(i), γ?) = min

{
1,
p(γ? | δ2, a, b, x, z) q(γ(i) | γ?)

p(γ | δ2, a, b, x, z) q(γ? | γ(i))

}
. (3.8)
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It is generally difficult to design a sampling distribution q(γ? | γ(i)) that permits a high acceptance rate. In
our case, q(γ? | γ(i)) derives directly from the full conditional of γk and consequently our acceptance rate is
guaranteed to be high. We direct the reader to a couple excellent introductions to the M-H algorithm [4, 8].

We need to consider two cases for the Metropolised Gibbs sampler: when γk = 0 and when γk = 1.
When kernel k is inactive, our proposal consists of flipping γk to 1 with probability p(γ?

k =1 | γ 6=k, a, b) ∝
p(γ?

k =1, γ 6=k, a, b) (see equation C.3a). When γk = 1, the acceptance probability is

A
(
γ?

k =1, γ
(i)
k =0

)
= min

{
1,

p(z | γ?
k =1, γ 6=k, δ

2, x)

p(z | γ
(i)
k =0, γ 6=k, δ

2, x)

}

= min

{
1,

√
ξ?
k (δ2ζ?

k)
−1

exp

(
ξ?
k

(
ZT
(
IN − vΨγ(i)Qγ(i)Ψγ(i)

T
)
Ψγ?

k

)2
)}

(3.9a)

following from the derivation of (C.6) in Sec. C.3. We define Ψγ?
k

to be the column vector of the kernel

response matrix introduced by the new kernel k, v , 1+δ2

δ2 , ζk , (ε + vΨγk

T (IN − Ψ0S0Ψ
T
0 )Ψγk

)−1 and
ξk , ( ε

δ2 + vΨγk

T (IN − vΨQΨT )Ψγk
)−1. There is always a subscript γ(i) on the variables Ψ, S and Q.

When kernel k is active, we deactivate it with probability p(γ?
k = 0 | γ 6=k, a, b) (see equation (C.3b)), and

then accept the change with probability

A
(
γ?

k = 0, γ
(i)
k = 1

)
= min

{
1,

p(z | γ?
k = 0, γ 6=k, δ

2, x)

p(z | γ
(i)
k = 1, γ 6=k, δ

2, x)

}

= min

{
1,

√
δ2ζ

(i)
k

(
ξ
(i)
k

)−1
exp

(
−ξ

(i)
k

(
ZT
(
IN − vΨγ?Qγ?Ψγ?

T
)
Ψγ

k

(i)

)2
)}

. (3.9b)

Depending on the strength of the γ prior, the Metropolised Gibbs sampler can filter out a lot of poor candi-
dates while maintaining a desirable M-H acceptance rate. See Appendix D for an efficient implementation
of the sampler.

4 Selection of local features

The first step in our object recognition approach is to employ a detector (or several) to filter out regions of
interest and then compute a rotation-invariant descriptor for each region. We use four different detectors
for generating observations x in a scene. The Harris-Laplace detector [24] finds corner-like features, the
Kadir-Brady detector [14] proposes circular regions with histograms of grey-level maximum entropy, and
the Laplacian of Gaussian (LoG) [16] and Difference of Gaussians (DoG) [21] — the latter an approximation
to the former — focus on regions of uniform intensity. The extracted regions are mapped to discs with a
fixed radius in order to achieve scale invariance. In some experiments, we use an affine-invariant version
of the Harris-Laplace detector. We use the procedure described in [25] to produce features invariant to
rotation and affine illumination changes. Based on earlier studies of object matching at different viewpoints
and illumination changes [26], we choose SIFT [21] to describe the normalised regions extracted by the
detectors. We compute each SIFT descriptor using 8 orientations and a 4 × 4 grid, resulting in a 128-
dimension feature vector.

5 Experiments

The goal is to design experiments that assess our model’s capacity for recognising objects in unseen images.
We evaluate recognition through image classification — identifying the presence or absence of objects in
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Figure 3: Images from the arctic dogs data set. The two leftmost images are labeled positive because they contain
instances of dogs. The two on the right are background scenes.

images — because it is a well-defined problem. We rank images for classification by summing the feature
label probabilities p(yi = 1 |xi) assigned by the model. Unless the image data is well-constructed, however,
it is hard to argue that image classification equates object recognition. We want to make sure we are learning
to recognise cars, not objects associated with cars, such as stop signs. We address these concerns by creating
three new data sets, where all the images emanate from the same environment: parking lots with and without
cars, and arctic landscapes with and without dogs and polar bears. All three sets exhibit a significant amount
of variation in scale, pose and lighting conditions. Examples of cars and dogs can be found in Figures 1 and
3, respectively. For purposes of comparison with other methods, we also show results on existing data sets.
We summarize the data used in our experiments in Table 1.

Training images Test images
Object class with object background with object background

airplanes 400 450 400 450
motorbikes 400 450 400 450

wildcats 100 450 100 450
bikes 100 100 50 50

people 100 100 50 50
cars 50 50 29 21

arctic dogs 26 36 13 19
polar bears 19 43 9 23

Table 1: Summary of the the experiment data. The airplanes, motorbikes and wildcats originate from [11], and the
bikes and people were first used in [29]. The dogs and polar bears come from the Corel data set. The car data set is
available by request.

H-L K-B LoG DoG Affine H-L Combo Random Fergus et al. Opelt et al.
airplanes 0.985 0.993 0.938 — — 0.998 — 0.902 0.889
motorbikes 0.988 0.998 0.983 — — 1.000 — 0.925 0.922
wildcats 0.960 0.980 0.930 — — 0.990 — 0.900 —
bikes 0.920 0.880 0.840 0.860 0.880 0.900 0.920 — 0.865
people 0.800 0.740 0.840 0.840 0.700 0.820 0.800 — 0.808
cars 0.966 0.897 0.897 0.897 0.931 0.931 0.690 — —
arctic dogs 0.615 0.538 0.769 0.615 0.692 0.615 0.462 — —
polar bears 0.667 0.556 0.556 0.556 0.556 0.556 0.667 — —

Table 2: Image classification performance on test sets measured using the Receiver Operating Characteristic (ROC)
equal error rate. The last two columns refer to the performance reported by Fergus et al. [11] and Opelt et al. [29].
All the other columns state the performance obtained using our proposed Bayesian model with regions extracted
from various detectors (from left to right): Harris-Laplace [24], entropy detector proposed by Kadir and Brady [14],
Laplacian of Gaussians [16], Difference of Gaussians [21], affine Harris-Laplace [25], combination of the Harris-
Laplace, Kadir-Brady and LoG, and regions randomly selected from all possible positions and scales in each image.
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Figure 4: The graph on the left plots the ROC curve for classification performance of car test images using the Harris-
Laplace detector (blue solid line) and the combination of three detectors (red dotted line). The graph on the right
shows analogous results for the bike test set. In both cases, the equal error rate (indicated by a large dot) is inferior
in the combination, but upon closer inspection, one could justifiably argue (depending on the error measure used) that
the combination performs slightly better.

Table 2 reports image classification results on all data sets. Before we enter into a discussion of our
results, we first explain how we conduct the experiments. For fair comparison, we adjust the thresholds of
the detectors in order to obtain an average of 100 detections per training image. Therefore, the combination
scenario (the sixth column in Table 2) possesses an average of 300 detections per image. We also include
results using a random detector, which indiscriminately selects a subset of 100 features from the entire
collection of regions at all scales and locations. We compare performance on the airplanes, motorbikes,
wildcats, bikes and people with the results obtained in [11, 29], but we do not control for the numbers of
detections: Fergus et al. [11] extract only 20 features per image on average, in part owing to the poor time
complexity of their method, while Opelt et al. [29] have a distinct advantage since they learn from several
hundred regions per image.

In all our experiments, we fix the label constraint n0 to 0 and set n1 between 15 and 30, depending on
the object in question. Our constraints tend to be conservative, the advantage being that they do not force
too many points to belong to objects that occupy only a small portion of the scene. (In a series of separate
trials on the cars, we varied n1 between 10 and 100 and observed no identifiable relationship between image
classification performance and constraint strength.) We set a = 1 and b conforming to a variable selection
prior of approximately 200 active kernel centres. We bestow near uninformative priors on the rest of the
model parameters. We find that 2000 MCMC samples with a burn-in period of 100 is sufficient for a good
approximation of the model posterior. As previously noted in this paper and confirmed in independent trials,
the Gaussian kernel scale parameter λ has a significant impact on the success of the learning algorithm.
Large values of λ — scales that concentrate the kernel mass to small neighbourhoods — do not generalise
well. High or diffuse scales appear to work best, which makes sense because they introduce uncertainty into
the kernel space, a boon for noisy tasks. However, large scales render our learning algorithm unstable, and in
experiments we notice that the Markov chain often fails to converge to a common posterior distribution. In
all our experiments, we set λ to 1/100 because our MCMC algorithm reliably converges to a good solution.
We note that scale selection is an unsolved problem.

We measure performance with the Receiver Operating Characteristic (ROC) equal error rate, since it
is a standard evaluation criterion [11, 29]. It is defined to be the point on the ROC curve — obtained by
varying the classification threshold — when the proportion of true positives is equal to the proportion of true
negatives.

We now highlight and discuss some of the more interesting results of Table 2. First and most signifi-
cantly, we observe that our model in combination with the three detectors always provides a better image
classification than [11, 29]. Independent MCMC trials exhibit little variance, so we can state confidently
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Figure 5: Plots of precision (percentage of correct positives) versus average recall per image for the task of labeling
individual features on cars and people. For reference, we show performance of the random detector, indicated by
the dotted black line. Note that the Combo curve continues to the 300 mark in recall per image. Our algorithm
learns which features are best in the combination, but this performance does not necessarily translate to better image
classification in Table 2.

that our improvements are well outside standard deviation intervals. Intriguingly, no detector dominates
classification of all the eight object classes. The combination of the Harris-Laplace, Kadir-Brady and LoG
detectors often, albeit inconsistently, improves the equal error rate. Further analysis of the performance on
the cars and bikes using the Harris-Laplace detector and the combination in Fig. 4 shows that the equal error
rate measure can be deceptive: the ROC curves imply that the combination of detectors is an improvement,
a result otherwise indicated by the equal error rate. From Fig. 5 (plot of precision versus average recall per
image for classification of individual features), we observe that the combined classifier learns which interest
regions are best, even though the combination does not necessarily translate to better image classification
performance (e.g. for people). Fig. 6 shows a couple examples where the combination results in a better
classification than the individual detectors.

The discrepancy between image classification performance in Table 2 and feature classification perfor-
mance in Fig. 5 shows that there exists an experimental gap between the two tasks. For instance, Harris-
Laplace features are poorly identified as cars (see Fig. 5), but they work best for determining whether a
car is present or absent in a scene (see Table 2). The implication is that most Harris-Laplace features are
indiscriminative on their own, but a small subset of the extracted regions are indeed very useful for im-
age classification. Likewise, random features compose a reasonably good classifier for people images even
though they are not discriminative individually, as indicated by the plots in Fig. 5. The difference between
random features and Harris-Laplace features, however, is that we can account for poor classification of in-
dividual random features because the model learns trends in the background of positive images. This goes
on to explain why random features are unsatisfactory for object detection in the car data set, since the back-
ground is the similar in positive and negative images. Examples of correctly classified images in Fig. 7 show
that the model learns to associate background regions with people.

Still, random features often do very well for image classification. What can we make of this surprising
result? It shows that it is often difficult to extract a priori useful object features. This is particularly the
case for people, since exhibit great inter-class variability. Furthermore, the descriptors we employ are not
appropriate for certain object classes, including bikes (shape features, such as those proposed in [13], might
work better). Cars, on the other hand, exhibit less variability within the same class, and consequently our
detectors consistently propose good features (wheels, corners of windows), which explains in part why
random features perform comparitively poorly. The other reason is that the cars (and dogs and polar bears)
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K-B  1.000 K-B  1.000 K-B  1.000

LoG  1.000 LoG  1.000 K-B  0.996

K-B  0.996 LoG  0.995 K-B  0.988

K-B  0.997 K-B  0.990 K-B  0.986

K-B  0.974 K-B  0.971 LoG  0.964

LoG  0.955 LoG  0.917 K-B  0.913

Figure 6: Two examples in which the combination results in an improved classification. The circles represent the 9
Harris-Laplace (left column) and combination (middle column) interest regions that are most likely to belong to cars
or bikes. On the right, we display the top features along with feature type and probability of positive classification.

contains cars contains cars contains people contains people

0

Figure 7: Examples of correctly classified images using randomly extracted interest regions. The circles depict all
the random regions along with their characteristic scale. Dark blue circles represent regions that are more likely than
not to belong to the object, while light yellow circles more probably belong to the background. The captions indicate
the correct labels. The model learns to associate background regions with people.

often occupy a small portion of the scene, necessitating a reasonable level of detector precision.
Another interesting result: in most cases, the affine-invariant transformation of the Harris-Laplace de-

tector reduces recognition ability, hinting that valuable information is lost in the description.
Finally, we wondered how increasing the level of supervision by adding labels to extracted regions

would affect performance. The results of our experiments on cars using the Harris-Laplace detector and
arctic dogs using the Laplacian of Gaussian detector are shown in Fig. 8. The ROC curves quantify the
models’ accuracy in labeling individual image features. As expected, the addition of a few hand-labeled
points improves recognition on the car training set. However, further upgrades in supervision result in
almost no gains in generalisation to the car test images. These results suggest that there is nearly enough
supervised information in the car captions to allow the model to correctly label and select the most reliable
features in unseen images. On the other hand, our model profits much more from supervision for recognising
dogs, presumably because there is not nearly enough information to properly learn the data association. We
show some examples of recognising cars and dogs with different levels of training supervision in Fig. 9.
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Figure 8: The ROC plots demonstrate how learning with different proportions of hand-labeled points affects perfor-
mance of labeling individual features. We use the Harris-Laplace detector for the cars, and the LoG for the dogs.

(a) contains cars (b) contains cars (c) contains dogs (d) contains dogs

Figure 9: Classification of individual interest regions using classifiers trained with various levels of supervision (see
Fig. 8). We show all the extracted interest regions along with their characteristic scale: dark blue circles are more
likely than not to belong to the object, while light yellow circles more probably belong to the background. (a) Car test
image, no observed car labels during training. (b) The same image, except that the model trained with 11% labels in
positive images. (c) and (d) show dog label predictions, without and with additional supervision (11%), respectively.
The caption below each image is the correct label.

To complete this section, we show some examples of correctly and incorrectly classified images in
Figures 10 and 11. The figures show all the regions extracted by the detectors.

6 Conclusions

In this paper, we extended the discriminative power of local scale-invariant features using Bayesian learning.
Our method allows us to solve the important problem of selecting and combining multiple local features. We
showed that constrained semi-supervised learning using MCMC is remarkably well-behaved in the face of
noisy high-dimensional features and wide variability in the unlabeled training data. On a less encouraging
note, our results indicate that there remains a lot of work ahead on proposing initial detections as a basis for
object representations, because random SIFT features are often competitive with current detection schemes.

The model we propose is very general, and it can be easily extended to compare the discriminative
ability of a variety of features, including shape and texture. One future extension to our learning framework
is the incorporation of soft constraints through Bayesian priors, which adapt the number of positive labels
according to the size of the object relative to the the background. An obvious but nonetheless interesting
extension is multi-category classification. We believe that are there still some intriguing opportunities for
improving the expected complexity of computation using ball trees [20]. Finally, we note that while we
propose new data sets that accurately evaluate object recognition, an neglected but important direction of
research is learning of vision models through user reinforcement.
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contains cars does not contain cars

does not contain peoplecontains peopledoes not contain bikes

contains bikes

Figure 10: Correctly ranked test images along with the regions extracted by the Harris-Laplace (for cars and bikes)
or Laplacian of Gaussian detector (for people). Dark blue circles represent regions that are more likely than not to
belong to the object, while light yellow circles more probably belong to the background. The caption below each
image indicates the correct classification.
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A Probability distributions

Here is a list of probability density functions used in this paper.

Name Density function Parameters
Bernoulli Bern(x |α) = αx(1− α)(1−x) x ∈ {0, 1}, success rate α ∈ [0, 1]

Beta Beta(x | a, b) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 x ∈ [0, 1], a, b ≥ 1

Univariate Normal N (x |µ, σ2) = (2πσ2)−1/2 x ∈ R, mean µ, variance σ2

× exp
(
− 1

2σ2 (x− µ)2
)

Multivariate Normal N (x |µ,Σ) = |2πΣ|−1/2 x ∈ R
F , mean µ, k × k positive

× exp
(
−1

2(x− µ)T Σ−1(x− µ)
)

semi-definite covariance Σ

Inverse Gamma IG(x |α, β) = βα

Γ(α)x
−(α+1)e−β/x x ∈ R, scale a > 0, shape b > 0

B Useful Identities

B.1 Matrix determinant

The determinant for a general block-partitioned matrix is
∣∣∣∣
A B
C D

∣∣∣∣ = |A||D − CA−1B|. (B.1)

If a is a scalar and A is an n× n square matrix, then

|aA| = an|A|. (B.2)
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B.2 Matrix inversion

The matrix inversion formula for a symmetric matrix with block sub-matrices is
[

A B
BT C

]−1

=

[
D−1 −A−1BE−1

−E−1BTA−1 E−1

]
, (B.3)

where D , A−BC−1BT and E , C −BTA−1B.

C Derivations

The following subsections provide the complete derivations of the posteriors used in Sec. 3.

C.1 Derivations of conditional posteriors for proposed classification model

We consider the model and notation introduced in Sec. 2. Following Bayes’ rule, the conditional posterior
for sampling the regresion coefficients is

p(β | γ, z) ∝ p(z | γ, β, x) p(β | γ, δ2)

= N
(
QγΨT

γ Z,Qγ

)
, (C.1)

where we define Q , (ΨT Ψ + (δ2S)−1)−1 and Z , [z1, z2, . . . , zN ]T .
Next, we derive the posterior of γ. It does not depend on β because it is combined with (C.1) to

comprise the blocked move described in Sec. 3.1. Since we have to integrate out β, this derivation is
somewhat involved. The conditional posterior of γ is proportional to the likelihood of z times the prior
over γ. However, for the time being we can forget about the prior since it will end up cancelling out in
the Metropolis-Hastings acceptance ratios (see Sec. 3.3). In any case, it is impractical to sample from
p(γ | δ2, z, x) directly, so we are really only interested in deriving the expression up to a constant term.

p(γ | δ2, z, x) ∝ p(z | γ, δ2, x)

=

∫
p(z | γ, β, x) p(β | γ, δ2) dβ

=

∫ (
(2π)N+Σγ

∣∣δ2Sγ

∣∣)−1/2
exp

(
− 1

2

(
ZTZ − 2ZT Ψγβ + βTQ−1

γ β
))
dβ (C.2a)

Temporarily defining Σ , Qγ and µ , ΣΨT
γ Z, and continuing from (C.2a), we get

p(z | γ, δ2, x) =

∫ (
(2π)N+Σγ

∣∣δ2Sγ

∣∣)−1/2
exp

(
− 1

2

(
ZTZ + βT Σ−1β − 2µT Σ−1β + µT Σ−1µ− µT Σ−1µ

))
dβ

=

∫ (
(2π)N+Σγ

∣∣δ2Sγ

∣∣)−1/2
exp

(
− 1

2

(
ZTZ − µT Σ−1µ

)) (
(2π)Σγ |Σ|

)1/2
N (β |µ,Σ) dβ

=
(
(2π)N

∣∣δ2SγQ
−1
γ

∣∣)−1/2
exp

(
− 1

2

(
ZTZ − ZT ΨγQγΨT

γ Z
))

∝
∣∣Qγ(δ2Sγ)−1

∣∣1/2
exp

(
− 1

2Z
TZ
)
exp

(
1
2Z

T ΨγQγΨT
γ Z
)

∝
√
|Qγ(δ2Sγ)−1| exp

(
ZT ΨγQγΨT

γ Z
)

=

√∣∣δ2SγΨT
γ Ψγ + IΣγ

∣∣−1
exp

(
ZT ΨγQγΨT

γ Z
)
. (C.2b)

Finally, we consider the effect of activating and deactivating a kernel k on the prior p(γ | a, b). We denote
6=k to be shorthand for the set {k′ | k ∈ {1, 2, . . . ,K}, k′ 6= k}.

p(γk = 1, γ 6=k | a, b) =
p(γk = 1, γ 6=k | a, b)

p(γk = 1, γ 6=k | a, b) + p(γk = 0, γ 6=k | a, b)
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=
Γ (Σγ 6=k+1+a) Γ (K − Σγ 6=k − 1+b)

Γ (Σγ 6=k+1+a) Γ (K − Σγ 6=k − 1+b) + Γ (Σγ 6=k+a) Γ (K − Σγ 6=k+b)

=

(
1 +

K − Σγ 6=k − 1+b

Σγ 6=k+a

)−1

=
Σγ 6=k+a

K+a+b− 1
. (C.3a)

The prior p(γ | a, b) is derived in (2.7). The prior when proposing a flip from 1 to 0 is likewise

p(γk = 0, γ 6=k | a, b) = 1− p(γk = 1 | γ 6=k | a, b)

= 1−

∑
γ 6=k+a

K+a+b− 1

=
K −

∑
γ 6=k+b− 1

K+a+b− 1
. (C.3b)

C.2 Derivation of parameter expansion algorithm for proposed classification model

We augment the sampling of the regression coefficients β by scaling the latent variables z using an expansion
parameter α with an inverse Gamma prior, as in Sec. 3.2. Defining the transformation to be tα(zi) = zi/α
and the Jacobian Jα(z) = det{∂tα(zi)/∂zi} = α−N , we sample α from the posterior

p(α |w, γ, δ2, µα, να)

∝ p(tα(w) | γ, δ2, x) |Jα(z)| p(α |µα, να)

=

∫
α−Np

(
w
α

∣∣ γ, β, x
)
p
(
β
∣∣ γ, δ2, w

α

)
p(α |µα, να) dβ

=

∫
α−NN

(
w
α

∣∣Ψγβ, IN
)
N
(
β
∣∣ 1
α

(
ΨT

γ Ψγ + (δ2Sγ)−1
)−1

ΨT
γW,

(
ΨT

γ Ψγ + (δ2Sγ)−1
)−1)

IG
(
α2 | µα

2 ,
να

2

)
dβ

∝

∫
α−N−µα−2 exp

(
− 1

2

(
W T W+να

α2 +βT
(
2ΨT Ψ+(δ2S)−1

)
β − 4

αW
T Ψβ+ 1

α2W
T Ψ
(
ΨT Ψ+(δ2S)−1

)−1
ΨTW

4
α2W

T Ψ
(
2ΨT Ψ + (δ2S)−1

)−1
− 4

α2W
T Ψ
(
2ΨT Ψ + (δ2S)−1

)−1
ΨTW

))
dβ

=
(
α2
)−((N+µα+1)/2+1)

exp
(
− 1

2α2

(
να+WTW+WT Ψ

((
ΨTΨ+S−1

)−1
− 2

(
ΨTΨ+(2δ2S)−1

)−1
)

ΨTW
))
α

∝ IG
(
α2
∣∣∣N+µα+1

2 , 1
2

(
να +WTW +WT Ψ

(
Q− 2Q̂

)
ΨTW

))
×
dα2

dα
. (C.4)

where w , t−1
α0

(z), W , [w1, w2, . . . , wN ]T , Q is defined as before and Q̂ , (ΨT Ψ + (2S)−1)−1. After
the third line we remove the γ subscript from the variables Ψ, S and Q for clarity. Note that when S is set
to the stabilised g-prior, Q̂ = (2δ2)((2δ2 + 1)ΨT Ψ + εIK)−1.

C.3 Derivation of z likelihood with stabilised g-prior

We continue the derivation of the z likelihood, now with the coefficient scale prior set to the g-prior with the
addition of a stabilising term, S = (ΨT Ψ + εIK)−1. In particular, we are interested an expressions for the
likelihood when γk is set to 0 and when γk is set to 1.

First, we introduce some notation. We use the subscript 0 on the variables Ψ, S and Q and to be
shorthand for {γk = 0, γ 6=k}. We similarly define the subscript 1 to be {γk = 1, γ 6=k}. Additionally, it
will be useful to define Ψγk

to be the column vector of the kernel response matrix introduced by γk = 1,
Σγ 6=k ,

∑
k′ 6=k γk′ , IN to be the N × N identity matrix, 1N×M to be an N ×M matrix of ones, Ak ,

ΨT
0 Ψγk

, v , 1+δ2

δ2 , and ζk and ξk to be the kth row, kth column elements in matrices S and Q, respectively.
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ζk and ξk are analogous to the element E−1 in the matrix inversion formula (B.3), so the expressions for
these two variables are

ζk =
(
ΨT

γk
Ψγk

+ ε−AT
k S0Ak

)−1

=
(
ε+ ΨT

γk

(
IN −Ψ0S0Ψ

T
0

)
Ψγk

)−1

ξk =
(
vΨT

γk
Ψγk

+ ε
δ2 − v

2AT
kQ0Ak

)−1

=
(

ε
δ2 + vΨT

γk

(
IN − vΨ0Q0Ψ

T
0

)
Ψγk

)−1
.

Following from the definitions in Sec. C.1 and the notation introduced here, we have

Q0 =
(
ΨT

0 Ψ0 + (δ2S0)
−1
)−1

=
(
ΨT

0 Ψ0 + (δ2)−1(ΨT
0 Ψ0 + εIΣγ)

)−1

=
(
vΨT

0 Ψ0 + ε
δ2 IΣγ

)−1
.

When γk = 0, the expression follows straight from (C.2b):

p(z | γk =0, γ 6=k, δ
2, x) ∝

√
(δ2)−Σγ 6=k

∣∣Q0S
−1
0

∣∣× exp
(
ZT Ψ0Q0Ψ

T
0 Z
)
. (C.5a)

We need to do a bit more work in the derivation when γk = 1. We apply the formulas for matrix inversion
(B.3) and for the matrix dterminant (B.1) to obtain

p(z | γk =1, γ 6=k, δ
2, x) ∝

√
(δ2)−(Σγ 6=k+1)

∣∣Q1S
−1
1

∣∣ exp
(
ZT Ψ1Q1Ψ

T
1 Z
)

=
√

(δ2)−(Σγ 6=k+1)

∣∣∣∣∣
ΨT

1 Ψ1 + εIΣγ 6=k+1

vΨT
1 Ψ1 + ε

δ2 IΣγ 6=k+1

∣∣∣∣∣

1/2

× exp

(
1
2Z

T

([
Ψ0 Ψγk

] [ Q0 + v2ξkQ0AkA
T
kQ

T
0 −vξkQ0Ak

−vξkA
T
kQ

T
0 ξk

] [
ΨT

0

ΨT
γk

])
Z

)

=

√
ξk|Q0| (ζk(δ2)Σγ 6=k+1|S0|)

−1

× exp
(

1
2Z

T
(
Ψ0Q0Ψ

T
0 + v2ξkΨ0Q0AkA

T
kQ

T
0 ΨT

0 − vξkΨ0Q0A0Ψ
T
γk

− vξkΨγk
AT

kQ
T
0 ΨT

0 + ξkΨT
γk

Ψγk

)
Z
)

=

√
ξk|Q0| (ζk(δ2)Σγ 6=k+1|S0|)

−1

× exp
(
ZT Ψ0Q0Ψ

T
0 Z + ξk

(
ZT
(
IN − vΨ0Q0Ψ

T
0

)
Ψγk

)2)1/2

. (C.5b)

Since we are going to compute Metropolis-Hastings acceptance probabilities, we are interested in the
ratios of the z likelihoods for the possible assignments of γk. The ratios simplify the expressions (C.5a) and
(C.5b) somewhat:

p(z | γk =1, γ 6=k, δ
2, x)

p(z | γk =0, γ 6=k, δ
2, x)

=

√
ξk(ζkδ

2)−1 × exp
(
ξk
(
ZT
(
IN − vΨ0Q0Ψ

T
0

)
Ψγk

)2)
. (C.6)

The ratio p(z | γk =0, γ 6=k, δ
2, x)/p(z | γk =1, γ 6=k, δ

2, x) follows similarly. Note that when we remove the
stabilisation term (ε = 0), the ratio (C.6) becomes

p(z | γk =1, γ 6=k, δ
2, x)

p(z | γk =0, γ 6=k, δ
2, x)

=

√√√√ 1

1 + δ2
exp

(
δ2

1 + δ2
×

(
ZT
(
IN −Ψ0S0Ψ

T
0

)
Ψγk

)2

ΨT
γk

(
IN −Ψ0S0Ψ

T
0

)
Ψγk

)
,

which is the same result obtained by [30].
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D Efficient algorithm for Metropolised Gibbs sampler

The algorithm METROPOLISED-GIBBS-SAMPLER-γ samples γ with time complexity O(NK2). We as-
sume the algorithm is provided with computed values for the kernel response matrix Ψ, the Gram matrix
ΨT Ψ and the stabilised g-prior S. 〈X〉 means the value X inside the brackets has already been computed,
and U[0,1] denotes a random variate uniformly distributed on the interval [0, 1]. It is interesting to note that
the algorithm fails when either ζk or ξk is negative, and these conditions imply either S or Q is not posi-
tive semi-definite. Therefore, this sampler ensures that β posterior is a proper distribution (provided the δ2

samples are behaved).

METROPOLISED-GIBBS-SAMPLER-γ
1 v ← 1+δ2

δ2

2 Q←
(
〈ΨT

Ψ〉+ (δ2S)−1
)−1

3 Compute 〈ΨT Z〉
4 for k = 1 to K do B Preferably in a random order.
5 if γk = 0 then
6 if U[0,1] <

Σγ+a
K+a+b−1 then

7 PROPOSE-GIBBS-BIRTH-γ
8 else if U[0,1] <

K−Σγ+b
K+a+b−1 then

9 PROPOSE-GIBBS-DEATH-γ

PROPOSE-GIBBS-BIRTH-γ
1 Compute Ψγk

2 Compute 〈ΨT
γk

Ψγk
〉

3 Compute 〈ΨT
Ψγk
〉

4 Compute 〈ΨT
γk

Z〉
5 〈SΨ

T
Ψγk
〉 ← S〈ΨT

Ψγk
〉

6 〈QΨ
T
Ψγk
〉 ← Q〈ΨT

Ψγk
〉

7 ζk ← 1/
(
ε+ 〈ΨT

γk
Ψγk
〉 − 〈ΨT

Ψγk
〉T 〈SΨ

T
Ψγk
〉
)

8 ξk ← 1/
(
ε/δ2 + v〈ΨT

γk
Ψγk
〉 − v2〈ΨT

Ψγk
〉T 〈QΨ

T
Ψγk
〉
)

9 x ← 〈ΨT
γk

Z〉 − v〈ΨT Z〉T 〈QΨ
T
Ψγk
〉

10 if U[0,1] < min
{

1,
√

ξk

δ2ζk

× exp (ξkx2)
}

then

11 GIBBS-ACTIVATE-γ

PROPOSE-GIBBS-DEATH-γ
1 Ψγk

← column k of Ψ
2 〈ΨT

Ψγk
〉 ← column k of 〈ΨT

Ψ〉 with all rows except row k
3 〈ΨT

γk
Z〉 ← row k of 〈ΨT Z〉

4 〈ΨT Z〉(new) ← all rows of 〈ΨT Z〉 except row k
5 ζk ← row k, column k entry of S
6 Vk ← column k of S with all rows except row k
7 S(new) ← all rows and columns of S except row k and column k
8 S(new) ← S(new) − VkV

T
k /ζk

9 ξk ← row k, column k entry of Q
10 Vk ← column k of Q with all rows except k
11 Q(new) ← all rows and columns of Q except row k and column k
12 Q(new) ← Q(new) − VkV

T
k /ξk

13 x ← 〈ΨT
γk

Z〉(new) − v〈ΨT Z〉TQ(new)〈ΨT
Ψγk
〉

14 if U[0,1] < min
{

1,
√

δ2ζk

ξk

× exp (−ξkx2)
}

then

15 GIBBS-DEACTIVATE-γ
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GIBBS-ACTIVATE-γ
1 Ψ ← [Ψ Ψγk

]

2 〈ΨT
Ψ〉 ←

[
〈ΨT

Ψ〉 〈ΨT
Ψγk
〉

〈ΨT
Ψγk
〉T 〈ΨT

γk
Ψγk
〉

]

3 〈ΨT Z〉 ←

[
〈ΨT Z〉
〈ΨT

γk
Z〉

]

4 S ←

[
S + ζk〈SΨ

T
Ψγk
〉〈SΨ

T
Ψγk
〉T −ζk〈SΨ

T
Ψγk
〉

−ζk〈SΨ
T
Ψγk
〉T ζk

]

5 Q ←

[
Q+ v2ξk〈QΨ

T
Ψγk
〉〈QΨ

T
Ψγk
〉T −vξk〈QΨ

T
Ψγk
〉

−vξk〈QΨ
T
Ψγk
〉T ξk

]

GIBBS-DEACTIVATE-γ
1 Ψ ← all columns of Ψ except k
2 〈ΨT

Ψ〉 ← all rows/columns of 〈ΨT
Ψ〉 except row/column k

3 〈ΨT Z〉 ← 〈ΨT Z〉(new)

4 S ← S(new)

5 Q ← Q(new)
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