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Abstract

The central objective of this thesis is to develop new algorithms for inference in
probabilistic graphical models that improve upon the state-of-the-art and lend new
insight into the computational nature of probabilistic inference. The four main tech-
nical contributions of this thesis, described separately in four chapters, are: 1) a new
framework for inference in probabilistic models based on stochastic approximation,
variational methods and sequential Monte Carlo is proposed that achieves signifi-
cant improvements in accuracy and reductions in variance over existing Monte Carlo
and variational methods, and at a comparable computational expense, 2) for many
instances of the proposed approach to probabilistic inference, constraints must be
imposed on the parameters, so I describe a new stochastic approximation algorithm
that adopts the methodology of primal-dual interior-point methods and handles con-
strained optimization problems much more robustly than existing approaches, 3) a
new class of conditionally-specified variational approximations based on mean field
theory is described, which, when combined with sequential Monte Carlo, overcome
some of the limitations imposed by conventional variational mean field approxima-
tions, and 4) I show how recent advances in variational inference can be used to im-
plement inference and learning in a novel contingently acyclic probabilistic relational
model, a model developed for the purpose of making predictions about relationships
in a social network.

In addition to these technical contributions, also contained within this thesis are
several important ideas: 1) interior-point methods can be leveraged for solving canon-
ical problems in machine learning, 2) meaningful connections are drawn between two
divergent philosophies on approximate inference, Monte Carlo simulation and varia-
tional methods, 3) and through these connections, approximate inference is framed as
a trade-off between achieving an estimator with low bias and one with low variance,
4) one can develop new inference algorithms by framing the variational objective with
respect to the conditionals of a target distribution, and 5) it is possible to model in-
terdependent relationships (such as friendship) using a directed graphical model just
as well as with an undirected graphical model by introducing latent variables that
explicitly guarantee acyclicity of the underlying directed graph. Finally, and not least
significantly, this thesis is a broad synthesis of probabilistic inference that spans many
different scientific and mathematical disciplines.
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Chapter 1

Introduction

Were it not for number and its nature, nothing that exists would be clear to
anybody either in itself or in its relation to other things. .. You can observe
the power of number exercising itself not only in the affairs of demons and
gods but in all the acts and the thoughts of men in all handicrafts and
music. Philolaus, 5th century B.C.

This thesis is about probabilistic inference. More precisely, it is about approximate
probabilistic inference. The aims of this thesis are to explore the challenges in making
accurate inferences, to further our understanding of these challenges, and to advance
the state-of-the-art in probabilistic inference. Achieving these objectives will involve
answering the following questions: What is probabilistic inference? Of what value
is it? What makes it so difficult? What problems can we solve effectively and, for
that matter, what does it mean to have an “effective” solution? Conversely, where
are improvements in inference needed? What mathematical tools do we have at our
disposal in order to understand the underlying challenges of probabilistic inference?
And finally: how can we build upon existing mathematical tools to conceive new and
more effective approaches to probabilistic inference?

Let me start with a formula that will be familiar to many readers:

 ple]2.0)plx]0)
Pllet) = 1T, 0) pla| 0) da 1)

This is Bayes’ rule.! Bayes’ rule tells us that the posterior p(x|e,f)—the distri-
bution over the unknowns x that take into account the evidence e—is proportional
to p(e|z,0), the likelihood of observing the evidence e given x and 6, multiplied by
p(x | 0), the prior probability of z occurring. The denominator in (1.1) ensures that
the product represents a probability. It is often called the marginal density or the
marginal likelihood. The posterior captures the model’s predictions about the world
when provided with measurements collected either through experiment, or through
observations made by a human or a robot. For instance, a court judge might be inter-
ested in creating a model of a crime scene and predicting whether a particular suspect
should be sentenced given witness accounts and evidence gathered by the lawyers.
In the past few decades, Bayes’ rule has played an increasingly prominent role
in the design and use of scientific models in a diverse array of scientific disciplines:
ecology (Clark, 2005; Punt & Hilborn, 1997), information retrieval (Blei et al., 2003;
Buntine & Jakulin, 2004; Griffiths & Steyvers, 2004), evolution and genetics (Huelsen-
beck et al., 2001; Pritchard et al., 2000a), physics and astronomy (Gregory, 2005),
theory of human cognition, perception and sensorimotor control (Kérding & Wolpert,
2006; Tenenbaum et al., 2006), political science (King et al., 2001; Park et al., 2004),

! Also known less correctly as Bayes’ theorem.



robotic navigation (Murphy, 2002), oncogenomics (Shah et al., 2007), decoding par-
ity check codes (Frey & MacKay, 1997; Moon, 2005), economics (Greenberg, 2007;
Lancaster, 2004) and public health (Samet et al., 2000), to name but a few. The ma-
jority of these scientific developments wouldn’t have been possible without advances
in methods for probabilistic inference.

Let me offer a couple observations concerning Bayes’ rule. Consider a random
variable X representing the roll of a die, and P(X = z) is the probability that the
die roll X comes up with the number x. From our knowledge of basic probability, the
probability that a die roll X comes up with a 5 or a 6 is equal to P(X =5)+ P(X =6),
while the probability that two dice thrown consecutively show a 5 and then a 6 is
P(X =5) x P(X=6). What Reverend Bayes tells us is that the posterior probability
of x is the likelihood that z generated the evidence e and the probability that p(z | 0)
produced a x, not “or”. In other words, Bayes’ rule says that if we have information
about x coming from two different sources—the likelihood and the prior—we should
combine these sources by taking their product. There is no reason why we can’t
extend this logic to multiple sources of information.

The second observation: the fact that p(e |z, 8) and p(x | #) represent probabilities
is incidental; we could replace them with non-negative functions f(e|z,0) and f(z|0)
without harming the interpretation of the posterior p(x|e, ) as a probability. The
non-negative functions are often called potentials, terminology borrowed from the
physics literature. It can be extremely convenient from a computational point of
view to treat all terms in the product as potentials, and indeed this is often done
by representing the distribution of interest by a product of real-valued functions,
functions alternately called potentials or factors. The theorem of Hammersley and
Clifford (Besag, 1974) provides us with the conditions upon which a product of factors
defines a valid probability density. Such representations are often called Markov
random fields (Kindermann & Snell, 1980) or conditional random fields (Lafferty et al.,
2001). They are used widely in many disciplines, notably computer vision (Carbonetto
et al., 2004; Marroquin, 1985; Wang et al., 2006; Winn & Shotton, 2006).

The computational challenges of probabilistic inference stem from the integral in
the denominator that appears in the application of Bayes’ rule; in order to be able to
evaluate the posterior probability of an assignment z, we need to be able to compute
the integral. In very special cases, this integral has a closed-form solution and the
solution is easy to compute, so we can infer expectations with respect to the posterior
exactly. This only happens for simple and uninteresting models when the prior is
conjugate to the likelihood. In many cases, it is conceivable to compute the integral,
but it is deemed intractable because the amount of computation required to come up
with the answer grows exponentially with the number of variables.? And there are
many cases in which no one has discovered a closed form solution, meaning that it is
tmpossible to compute the integral exactly. When the integral is intractable or has no
solution, we need to appeal to approximate methods for probabilistic inference. There

2For example, inference in a multiply connected Bayesian network with discrete random variables
can be reduced to the problem of counting the number of satisfying assignments of a propositional
logic formula, so it belongs to the class of #P-hard problems.



are two traditions of approximate inference: the wariational approach to inference
based on optimization, and the Monte Carlo approach based on simulation.?

It is precisely this problem—the computation of an integral with no known analytic
solution—that Metropolis and Ulam (1949) confronted at Los Alamos in the 1940s
when they were trying to simulate the behaviour of nuclear events following the
mechanics of the Fokker-Planck equation. Since their statistical-mechanical systems
involved a great number of individual interactions, they argued that one should only
count those that have a large probability of occurring. Such insights led to the
development of the Monte Carlo method.

Today, the two most popular Monte Carlo methods are Markov Chain Monte
Carlo (MCMC) and importance sampling (Robert & Casella, 2004). Importance
sampling is perhaps the most easily understood of the two. The idea is to come up
with an artificial distribution over the unknowns, which I'll denote by g(x), such that
it is possible to draw samples from this distribution. The samples are then weighted
to account for any discrepancies between the sampling distribution and the target
posterior. For instance, suppose we are designing a decoder for a parity check code,
and we want to calculate the expectation that the ith bit of the transmitted codeword
x is zero given our prior knowledge of codewords, and given the received (noisy) signal
e. In other words, we want to estimate the posterior probability p(x; = 0]e, ). A
Monte Carlo estimate of this probability would be the weighted count

n

e =0le0) % 3 w(e) ofal) (1.2)

s=1

where n is the number of samples drawn, w(x) is the importance weight of sample
x, and 0,(z) is a delta-mass function, which is equal to 1 when z = y, and 0 other-
wise. The accuracy of this estimate will of course depend on the number of samples
drawn. It will also depend on the extent to which the sampling distribution ¢(z)
agrees with the posterior distribution; if the shape of the proposal distribution ¢(z)
bears little semblance to p(z | e, ), the importance sampling method will deteriorate
in high dimensions, making it practically useless for all but the smallest problems.
Likelihood weighting (Fung & Chang, 1989) is an important case in point. Thus,
an effective proposal distribution must be tuned to the target posterior. Since its
inception, much of the work on importance sampling has focused on devising better
sampling distributions by teasing out analytic structure from posteriors via, for in-
stance, dynamic programming and Rao-Blackwellization (Andrieu & Doucet, 2002;
Doucet et al., 2000a; Martinez-Cantin et al., 2007).

The other main branch of Monte Carlo methods, MCMC, is founded on some of

3There is actually a third approach to probabilistic inference that isn’t captured by variational or
Monte Carlo methodology—it is based on algorithms for heuristic search such as branch-and-bound
(Pearl, 1984). This approach has primarily lead to a formal characterization of the space and time
complexity tradeoffs in exact inference for Bayesian networks (Darwiche, 2001; Dechter & Mateescu,
2007; Park & Darwiche, 2003; Peot & Shachter, 1991). This approach should not be confused with
the application of Bayesian reasoning to search (Hansson & Mayer, 1989).



the most elegant (but not necessarily easily grasped) theory in all of mathematics.
The most important incarnation of MCMC is the method first devised by Metropolis
and then later generalized by the Canadian mathematician Hastings. The Metropolis-
Hastings method is relatively simple to understand and use, and it subsumes many
other popular methods, including Gibbs sampling. Unlike importance sampling, the
samples are not drawn independently of one another; the samples form a Markov
chain. The theory tells us that as long as the chain is ergodic and its invariant dis-
tribution is the posterior in question—in other words, it meets the detailed balance
condition (Chib & Greenberg, 1995)—then simulating the Markov chain will (eventu-
ally) give us the right answer (Meyn & Tweedie, 1993). The beauty of the Metropolis-
Hastings method is that it automatically guarantees that the Markov chain will have
the proper invariant distribution, and it is ergodic under easily-satisfied conditions.
Therefore, you don’t have to be an expert in probability theory to use the Metropolis-
Hastings algorithm to simulate a Markov chain for your statistical model. Due to their
broad applicability and ease of use, nearly every survey of Bayesian methods includes
an introduction to MCMC methods.

Now the bad news. We can think of the Markov chain as exploring the space
of possible configurations, visiting the regions of high probability most frequently.
The fundamental challenge lies in designing a Markov chain that explores the space
efficiently; that is, it does not take a lot of iterations to move from one region of high
probability to another. The Gibbs sampler, for instance, may be extremely slow to
converge if the random variables exhibit strong correlations (Liu et al., 1994; Liu &
Wu, 1999). There are also many well-studied problems for which the Gibbs sampler
or Metropolis-Hastings method fail miserably on this account, to the point that they
often get “stuck” in a region of high probability; see Celeux et al. (2000) and Newman
and Barkema (1999). This happens because the low-probability regions act as a
barrier that prevents the Markov chain from escaping. This is particularly troubling
since it means that a finite Markov chain can get stuck in a local mode, thus failing
to produce a representative prediction. Hastings (1970) himself anticipated these
problems when he wrote, “even the simplest of numerical methods may yield spurious
results if insufficient care is taken in their use, and how difficult it often is to assess
the magnitude of the errors.” There has been much work on coming up with ways
to overcome Hastings’ criticism, with mixed success. Larger moves often overcome
low-probability barriers and explore the state space in a more effective manner. For
example, Hamze and de Freitas (2004) show how to exploit the structure of a sparse,
discrete Markov random field to produce a better Gibbs sampler. A well-engineered
Metropolis-Hastings algorithm can overcome some the stated drawbacks, but it is not
immune to the curse of dimensionality: large moves can have poor acceptance rates,
yielding as before, slow convergence of the Markov chain.

A very different class of methods for probabilistic inference called wariational
methods—also with strong ties to physics, most notably in the work of Bethe and
Kikuchi—transform the integration problem to an optimization problem. The key
idea is to come up with a class of approximating distributions ¢(z), then optimize
some criterion to find the ¢(x) that most closely matches the posterior p(z|e,6).

4



In information theory, the criterion used to measure the distance between ¢(z) and
p(z|e,0) is called the Kullback-Leibler divergence. In statistical physics, they use a
very different-looking but equivalent distance measure called the Gibbs free energy.
The variational approach to probabilistic inference has been thoroughly explored in
the past couple of decades. It has been the subject of many recent Ph.D. dissertations,
notably Beal (2003), Lawrence (2000), Jaakkola (1997), Minka (2001b), Ravikumar
(2007) and Wainwright (2002).

In order to devise a practical variational inference procedure, it is necessary to
choose a class of approximating distributions ¢(x) that have “nice” analytic proper-
ties. For instance, the mean field class of approximating distributions factorize in an
analytically convenient fashion. Mean field remains a popular tool for statistical in-
ference because it applies to a wide range of problems. Bethe-Kikuchi approximations
overcome some of the severe restrictions on factorizability by decomposing the entropy
according to a junction graph (Aji & McEliece, 2001) or, more generally, according to
a region graph (Yedidia et al., 2005). And expectation propagation (Minka, 2001a)
produces a practical inference procedure by projecting the resulting beliefs onto a
tractable family of distributions. Once we’ve chosen an approximating class, we can
use our techniques from numerical optimization (e.g. Newton’s method, coordinate
ascent) to compute a ¢(z) that minimizes the distance measure. The nice analytical
properties of g(x) allow us to easily answer queries regarding .

The big problem with variational methodology I've just described is that the class
of “nice” distributions may be so limiting that the closest ¢(z) will still be far away
from the true posterior, meaning that our estimates risk being excessively biased.
As remarked by Yedidia in Opper and Saad (2001), mean field approximations often
impose unrealistic or questionable factorizations, leading to biased solutions. With
some ingenuity you may be able to design a less limiting class of approximating
distributions by exploiting special properties of the posterior; see, for instance, Saul
and Jordan (1996), Teh et al. (2007a), Wiegerinck (2000) and Xing et al. (2003).

Notice the common thread throughout all approaches to approximate inference:
the most effective procedures are those that take advantage of the structure inherent
within the model. But what is “structure” exactly? 1 propose the following defi-
nition: It is the relationship between model semantics and the implementation of a
probabilistic inference algorithm.* This definition deliberately leaves room for inter-
pretation, in the way that the word gene avoids definition (Keller, 2000). The two
principal research challenges of probabilistic inference are to discover structure, and
to invent new ways to describe structure in a clear and cohesive manner. The latter
challenge motivates, at least in part, research in probabilistic logic languages (Getoor
& Taskar, 2007; Milch, 2006). The challenges of discovering and exploiting structure
surface in other machine learning problems, such as learning and planning in partially
observable Markov decision processes, or POMDPs (Poupart, 2005). As new math-
ematical or analytical tools come to our disposal, or as we uncover tools from other

4A shortcoming of this definition is that structure is related to the choice of inference algorithm.
Arguably, one should be able to talk about model structure before deciding on the inference strategy.



scientific disciplines, we will undoubtedly find new ways to reason about structure in
probabilistic models. A practitioner must always design a model cognizant of whether
it is possible to make accurate and efficient inferences—or whether it is possible to
conduct inference at all—so as we discover new kinds of structure in probabilistic
models, scientists will benefit by being able to design models with greater freedom.

Many notions of structure only come to light under certain algorithmic frame-
works for inference, and depending on how we choose to describe the model. To
date, the best-understood notion of structure is, arguably, conditional independence.
The conditional independencies are most clearly and concisely described using an
undirected graphical model (Jordan, 2004). The conditional independencies are less
obvious in a directed graphical representation. However, the directed model can tell
us whether a node is irrelevant to a query and, if so, it can be ignored during variable
elimination (Shachter, 1998; Zhang & Poole, 1994). The extent to which structure is
revealed very much depends on the representation we choose for our model. Thus,
model representation and model structure are intertwined.

One of the difficulties in forming a cohesive picture of the challenges of probabilistic
inference is the great variety of model structure that a practitioner might encounter.
Examples of types of structure that can be exploited for more efficient and accurate
inference include:

e Conjugacy (Gelman et al., 2003).

e Junction tree width (Paskin, 2004).

e Causal independence (Zhang & Poole, 1996).

e Context-specific independence (Boutilier et al., 1996).

e First-order information for lifted inference (Poole, 2003; Milch et al., 2008).

e Exchangeability (Aldous, 1985; Ghosh & Ramamoorthi, 2003).

e Structure in the query itself; for instance, the second-order terms in the variance
may have a negligible impact on the final answer, hence can be ignored (Gillespie,
2004; Hudson, 1991).

e Stationary increments in continuous-time Markov processes (Ross, 2007).

e Structure in the kernel matrix (Shen et al., 2006).

e Many inference algorithms exploit the special properties of the exponential family
(Dobson, 2002; Wainwright & Jordan, 2003a).

Some examples of structure exist only in very specific cases, such as an Ising ferro-
magnet with a uniform magnetic field, and the maximum a posteriori solution to a
Markov random field with binary random variables (Boykov et al., 2001; Kolmogorov
& Zabih, 2004).

Another obstacle to cultivating a global understanding of probabilistic inference
is the great variety of needs. For instance, in some cases it is perfectly acceptable
to obtain a single point estimate, such as the most likely outcome (e.g. for binary
classification). In some cases, we would prefer computing an expected value, but this
may not be a realistic prospect given that we need to take into account a very large
amount of data, say, a large cohort of genotype sequences, or perhaps the preferences



of hundreds of thousands of users of a movie website. In other cases, it is extremely
important to obtain estimates with high accuracy—say, for determining whether a
patient should undergo treatment for cancer, or whether a satellite will collide with
another large object in orbit—as incorrect estimates may bear a high cost. We may
also have severe time constraints on inference when, for example, we want to know
whether there is a pedestrian crossing the road at the upcoming intersection, or we
want to display movie recommendations to a user in a timely fashion. Decisions and
maximizing one’s utility may guide us in these matters, as we should spend more
computational effort on inferring quantities that matter the most (Russell, 1997).

1.1 Contributions

My thesis is about making inferences in large probabilistic models when we need ac-
curate answers, and when there is relatively little structure to bring to the table. 1
develop new, more accurate approximate inference algorithms for such challenging
inference problems by exploiting the strengths of Monte Carlo and variational meth-
ods. These algorithms improve upon the large bias of variational methods, and they
improve upon the high variance importance sampling methods. They are covered in
Chapters 3 and 4.

The first attempt to develop my thesis—which I called conditional mean field—
hinges upon a new class of conditionally-specified variational approximations, and
uses a sequence of successively less biased variational approximations together with
the sequential Monte Carlo framework to implement probabilistic inference. My first
attempt, however, suffers the limitations of variational mean field approximations.
The conditional mean field algorithm is covered in Chapter 4. Most of the material
in this chapter was originally published in Carbonetto and de Freitas (2007).

My second attempt more successfully captures the strengths of Monte Carlo and
variational methods because it allows for a natural trade-off between estimator bias
(due to variational approximation) and variance (incurred from importance sampling).
My new approach is described in Chapter 3. It can be interpreted as a variational
method, a sequential Monte Carlo method, and as a stochastic approximation method.
All the material contained in Chapter 3 is original work. Matthew King, a post-
doctoral researcher in the Department of Botany at UBC, provided a great deal of
assistance in the application of my work to population genetics.

Development of the algorithmic framework in Chapter 3 hinges upon a stochastic
approximation method that can reliably handle constraints. Since no method fitting
that description exists, I take a slight detour in my thesis in Chapter 2 and develop a
constrained stochastic approximation algorithm. The algorithm is based on primal-
dual interior-point methods which were originally developed for linear programming.
Much of the material presented in Chapter 2 was originally published in Carbonetto
et al. (2009). My co-author Mark Schmidt helped me apply the proposed interior-
point stochastic approximation method to on-line learning with L, regularization.

Finally, in Chapter 5, I explore the issues in representing interdependencies in
social network models. What is proposed is an alternative representation of social

7



networks using conditional probabilities, the main innovation being the introduc-
tion of latent variables that control for the direction of influence within the social
network. I show how the context-specific independence structure of the proposed
directed graphical model can be exploited to implement inference and learning using
existing variational techniques. The material in Chapter 5 was written in collabora-
tion with Jacek Kisynski, Michael Chiang and David Poole. The conception of the
contingently acyclic model and the social network domain is credited to David Poole.
I am primarily responsible for implementation of inference and learning in the model,
as well as the empirical aspects of this research, with a great deal of assistance from
colleague Jacek Kisynski.



Chapter 2

Stochastic approximation subject to
constraints

The original paper on stochastic approximation by Robbins and Monro (1951) de-
scribes a simple algorithm for finding the solution to a nonlinear system of equations
F(z) = 0 when we only have available noisy, unbiased measurements of F(z). Of
particular interest is the analysis of convergence for this algorithm, since this analysis
lays the theoretical foundation for understanding many important, actively-studied
problems in machine learning: policy gradient and temporal differences for reinforce-
ment learning (Jaakkola et al., 1994; Sutton et al., 2000; Williams, 1992), regret
minimization in repeated games (Hazan et al., 2007; Zinkevich, 2003), inference for
tracking and filtering (George & Powell, 2006; Mathews & Xie, 1993), parameter es-
timation in probabilistic graphical models (Titterington, 1984; Vishwanathan et al.,
2006; Younes, 1991) including the contrastive divergences algorithm (Hinton, 2002;
Sun et al., 2008), and on-line learning (Bottou, 1998; Bottou, 2004; Delyon et al.,
1999; Kivinen et al., 2004; Sato, 2000; Shalev-Shwartz et al., 2007). In this chapter, I
highlight the last one, on-line learning. It is the problem of learning a model by mak-
ing adjustments that take into account new observations without having to review all
the previous observations.

The Robbins-Monro method is a simple algorithm with profound implications.
It is simple because it is only a slight modification to the most basic method for
optimization, steepest descent (Gill et al., 1986). It is profound because it suggests a
fundamentally different way of optimizing a problem—instead of insisting on making
progress toward the solution at every iteration, it only requires that progress be
achieved on average.

Constrained optimization also plays a key role in machine learning; there is a
vast array of problems formulated as constrained optimization. Researchers make
use of the accompanying mathematical theory to develop efficient solutions to their
problems. It is rather strange, then, that there is relatively little work on applying
stochastic approximation to learning problems with constraints. Constrained opti-
mization problems are pervasive, yet constrained optimization in the stochastic do-
main is relatively unexplored. The reason for this, we hypothesize, is that no robust,
widely-applicable stochastic approximation method exists for handling such problems.

There is a sizable body of work on treating constraints by extending established
optimization techniques to the stochastic setting. However, existing methods are ei-
ther unreliable or suited only to specific types of constraints. The two major existing
approaches involve either projecting the iterates onto the feasible set (Bertsekas, 1999;
Poljak, 1978), or converting the problem to an unconstrained one by introducing a
penalty term in the objective (Hiriart-Urruty, 1977; Kushner & Clark, 1978). There
are several problems with both approaches. Projection may be a bad idea because



it may severely impede progress toward the solution when the iterates are near the
boundary of the feasible set. Furthermore, it is expensive to compute the projection
for all but the simplest constraints. Most penalty methods have been shown in the
numerical optimization community to have severe drawbacks, and they cannot pos-
sibly be better in the stochastic setting. The augmented Lagrangian method (Wang
& Spall, 2003) is considered to be the most promising penalty method, but suffers
from serious deficits, namely sensitivity to the choice of penalty parameter, and lack
of a strong guarantee on convergence. Sub-gradient methods have also been used in
the stochastic approximation literature (Hazan et al., 2007; Nedic & Bertsekas, 2001;
Sadegh, 1997; Shalev-Shwartz et al., 2007; Zheng, 2005), but they are only suited to
a limited range of constraints and, as I show in experiments, they can be unreliable.
I argue that a reliable stochastic approximation method that handles constraints is
needed because constraints routinely arise in the mathematical formulation of learning
problems, and the alternative approach—penalization—is often unsatisfactory.

In this chapter, I propose that interior-point methods are a natural solution. The
main contribution is to present a new stochastic approximation method in which each
step is the solution to the primal-dual system that arises in interior-point methods
(Forsgren et al., 2002). I show that interior-point methods are remarkably well-suited
to stochastic approximation, a conclusion that is far from trivial when one considers
that stochastic algorithms do not behave like their deterministic counterparts. For
instance, Wolfe conditions for line search (Nocedal & Wright, 2006) do not apply.
The method is easy to implement and provides a satisfactory solution to constrained
learning problems.

The original motivation behind the work in this chapter was the implementation
of a stochastic approximation method for inference in probabilistic models, because
constraints commonly arise in inference. (This will be presented in the next chapter.)
For instance, a conditional probability table must lie within the probability simplex,
while a covariance matrix must always be positive definite. Coming up with a reliable
solution to this problem has turned into an interesting endeavor in its own right, and
may be of interest to the machine learning and optimization communities at large.

I also investigate the application of the proposed stochastic approximation method
to an on-line learning problem. In Sec. 2.5, I derive a variant of Widrow and Hoff’s
classic “delta rule” for on-line learning (Mitchell, 1997). It achieves feature selection
via L1 regularization, so it is well-suited for learning problems with lots of data in high
dimensions, such as the problem of filtering spam from your email account (Sec. 2.5.8).
To my knowledge, there is only one existing method that reliably achieves L; regu-
larization in large-scale problems when data is processed on-line or on-demand. The
on-line method of Garrigues and Ghaoui (2009), based on the homotopy algorithm
for the Lasso, was published concurrently with my work (Carbonetto et al., 2009).

I begin this chapter by reviewing the basics behind stochastic approximation,
describing the problem, and outlining the proposed solution (Sec. 2.1). To describe
and analyze the proposed method in greater detail, I review the rich and extensive
body of work on interior-point methods (Sec. 2.2). It is crucial that we establish
convergence and numerical stability guarantees for our method (Sec. 2.3). To do so, 1
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rely on mathematical developments from both the worlds of stochastic approximation
and numerical optimization.

2.1 Overview of algorithm

In their 1951 research paper, Robbins and Monro examined the problem of tuning a
control variable x (for instance, the amount of alkaline solution) so that the expected
outcome of the experiment F'(z) (the pH of the soil) attains a desired level « (so your
Hydrangea have pink blossoms). When the distribution of the experimental outcomes
is unknown to the statistician or gardener, it may be still possible to take observations
at x. In such case, Robbins and Monro showed that a particularly effective way to
achieve the desired response level is to take a (hopefully unbiased) noisy measurement,
gr =~ F(x1), adjust the control variable xj according to

Tyl = Tk — ARGk (2.1)

for some step size aj > 0, then repeat. (I've assumed here that the derived level « is
0. This assumption can be made without loss of generality.) Provided the sequence
of step sizes is chosen to behave like the harmonic series (Cormen et al., 2001), this
algorithm converges to the correct solution F'(x*) = 0. The Robbins-Monro procedure
can be considerably more efficient than averaging over several observations g before
adjusting the control variable; see Spall (2000).

Since the original publication, mathematicians have extended, generalized, and
further weakened the convergence conditions; see Kushner and Clark (1978), Kushner
and Yin (2003) and Scheber (1973) for some of these developments. Most of the
effort in the mathematics community has been directed toward formulating general
and verifiable conditions that ensure convergence of the stochastic approximation
method, usually by assuming the noise in the gradient observation is a Martingale
difference; see, for instance, Chapter 5 of Kushner and Yin (2003). In contrast to
standard optimization methods such as steepest descent, there is no guarantee that
progress toward the solution is made at each step. This means that the analysis of
convergence must follow a different strategy.

Kiefer and Wolfowitz (1952) re-interpreted the stochastic process as one of solving
an optimization problem; the root-finding problem relates to an optimization problem
when F'(z) is the gradient V f(z) of some objective of interest f(x). Later, Dvoretsky
(1956) pointed out that each measurement gy, is actually the gradient V f(zy) = F(xy)
plus some noise &(x). Hence, the stochastic gradient algorithm. The Kiefer-Wolfowitz
stochastic approximation serves as a generalization to Robbins-Monro, because it al-
lows us to treat the case when only noisy measurements of the objective are available.
More recent work has focused on the gradient-free case (Spall, 2000), or on improve-
ments to the gradient descent step by adapting the step size or reducing the variance
through scaling or second-order information; see, for instance, Lawrence et al. (2003)
and Ruppert (1985). More recently, Kivinen (2003); Kivinen and Warmuth (1997)
and others have re-interpreted stochastic approximation as a trade-off between two
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objectives, and in certain cases, this new perspective may lead to better algorithms.
In this chapter, I introduce a convergent sequence of nonlinear systems F,(xz) = 0
and interpret the Robbins-Monro process {zy} as solving a constrained optimization
problem.

Many problems in the machine learning literature can be cast as the problem of
optimizing some objective function f(z) in which the optimizer only has access to
noisy, unbiased estimates of the gradient V f(x). That is, the noisy gradient measure-
ment g is generated some random process. (I discuss the conditions imposed on the
behaviour of this random process in Sec. 2.3.) The stochasticity of the gradient can
arise for various reasons. For instance, in policy gradient for reinforcement learning
(Baxter & Bartlett, 2001; Lawrence et al., 2003) the exact form of the gradient may
be unknown, but it is still may be possible to simulate a sample g, that approximates
the true gradient V f(x). Stochasticity may alternatively arise due to the fact that the
gradient is composed of a linear combination of responses gp—i.e. the gradient is an
expectation of the noisy responses—and only a subset of the responses are accessible
at any one point in time. Such is the case in on-line learning, in which we only have
access to a small portion of the data at any one point in time. This is a scenario we
investigate in detail in Sec. 2.5.

I extend the original stochastic approximation problem by introducing inequality
constraints on x. I will focus on convex optimization problems (Boyd & Vanden-
berghe, 2004) of the form

minimize  f(x)

subject to ¢(z) <0, (2:2)

where c(x) is a vector of inequality constraints, and measurements gy of the gradient
at xj are assumed to be noisy. The feasible set, by contrast, should be known exactly.!
In Sec. 2.5, we will cast an important problem in machine learning as a constrained
optimization problem of the form (2.2) in which we only have access to noisy estimates
of the gradient.

The presence of noise in the gradient changes the constrained optimization prob-
lem (2.2) in a fundamental way because we can no longer rely on a merit function
(Nocedal & Wright, 2006) to ensure progress toward the solution at every step. As
a result, the convergence behaviour of stochastic approximation is very much unlike
the behaviour of algorithms from the numerical optimization literature. Despite the
stochastic nature of the constrained optimization problems explored in this chapter,
the solutions to these problems always remain well-defined.

To simplify the exposition, I do not consider equality constraints; techniques for
handling them are firmly established in the literature (Gould, 1985; Gould et al.,
2005). One conventionally assumes convexity to simplify analysis of stochastic ap-
proximation. Besides, convergence in non-convex, constrained optimization is a far

!There are cases, such as in the literature on constrained Markov decision processes (Altman,
1999), in which the constraints themselves might be difficult to compute exactly. I do not explore
this scenario.
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o Let xg, zgp be given.
o for k=1,2,3,...

1. Set maximum step size a; and centering parameter oy.

2. Set barrier parameter py according to (2.18).

3. Run simulation to obtain gradient observation gy.

4. Compute primal-dual search direction (Axy, Azy) by
solving (2.16) with Vf(z) = gx.

5. Run backtracking line search to the find largest step
size a, < min{ay, 0.995 min;(—zx;/Azk;)} such that
c(xp—1 + agAzy) < 0, and min;(-) is over all ¢ such
that Az,; < 0.

6. Set xp = xp_1 + apAxy.

7. Set zp, = zp_1 + apdzg.

Figure 2.1: The interior-point stochastic approximation algorithm.

from settled topic. I also assume that the strictly feasible set is nonempty; that is,
there is at least one point x such that c¢(x) < 0 holds. This is otherwise known
in the convex analysis literature as Slater’s condition (Boyd & Vandenberghe, 2004).
Further conditions that are needed to guarantee convergence are discussed in Sec. 2.3.

Following the standard barrier approach (Forsgren et al., 2002), we frame the
constrained optimization problem as a sequence of unconstrained objectives. This in
turn is cast as a sequence of root-finding problems F},(x) = 0, where 1 > 0 controls
for the accuracy of the approximate objective and should tend toward zero. As I
explain in Sec. 2.2, a dramatically more effective strategy is to solve for the root
of the primal-dual equations F,,(x, z), where z represents the collection of Lagrange
multipliers or dual variables. This is the basic formula of the proposed interior-point
stochastic approximation method.

Fig. 2.1 outlines the main contribution of this chapter. Each iteration of the
main loop consists of choosing a suitable value for the barrier parameter u, solving
the primal-dual system with a noisy estimate of the gradient to obtain the search
direction (Ax, Az), computing a step length that ensures the new iterate will remain
within the boundary of the feasible set, then updating the primal and dual variables.?
I will elaborate on all these in subsequent sections. The backtracking line search may
or may not be necessary, depending on the form of the inequality constraints c(x).

Provided zg is feasible and zg > 0, every subsequent iterate (zg,zx;) will be an
“interior” point as well. Notice the absence of a sufficient decrease condition on
| Fu(z, z)|| or suitable merit function; this is not needed in the stochastic setting.
The stochastic approximation algorithm requires a slightly non-standard treatment
because the target F,(x,z) moves as u changes over time. Fortunately, convergence

2Having separate step lengths for the primal and dual variables is often recommended in the
numerical optimization literature, as it can lead to faster convergence. For the sake of simplicity, I
assume that the primal and dual variables are updated with the same step length ay.
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Figure 2.2: The log-barrier function (solid line) applied to the constraint = > 1 for
different values of u. The dashed line is the exact penalty function.

under non-stationarity has been studied in the literature on tracking and adaptive
filtering (Benveniste et al., 1990; Kushner & Yang, 1995; Ljung, 1977; Métivier &
Priouret, 1984). Much of this line of work has focused on adaptively selecting step
sizes that promote faster convergence (George & Powell, 2006; Mathews & Xie, 1993).
While this work is potentially helpful, I do not explore adaptive step sizes here.

In the next section, I derive the primal-dual system which is used to solve for the
search direction (Ax,Az) in the interior-point stochastic approximation method. In
Sec. 2.2.4, 1 outline the various standard approaches for computing the primal-dual
search direction. And in Sec. 2.3, I discuss conditions upon which the interior-point
stochastic approximation algorithm will eventually converge to the optimal solution.

2.2 Background on interior-point methods

In this section, I motivate and derive the primal-dual interior-point method starting
from the logarithmic barrier method. Despite the incredible successes of interior-point
methods for solving large-scale constrained optimization problems, these methods are
not well known within the machine learning community. This section serves as an
introduction to interior-point methods. For a more extensive overview of the mathe-
matics behind interior-point methods, I refer the reader to Forsgren et al. (2002).

Barrier methods date back to the work of Fiacco and McCormick (1968), but they
lost favour due to their unreliable nature. Ill-conditioning was long considered to be
their undoing. However, careful analysis (Forsgren et al., 2002; Wright, 1995) has
shown that poor conditioning is in fact not the problem—rather, it is a deficiency in
the search direction. In the next section, I will exploit this very analysis to show that
every iteration of our algorithm produces a stable iterate in the face of: 1) a highly
ill-conditioned linear system, 2) noisy observations of the gradient.

The basic idea behind the interior-point method is to formulate an unconstrained
approximation to the problem (2.2) via a barrier function. This is achieved by in-
serting into the objective a barrier or penalty term that mimics the behaviour of the
inequality constraints. There is ample room for what qualifies as a barrier function,
but I shall restrict my attention to the logarithmic barrier function since it is by far
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the most studied and used. The log-barrier leads to the unconstrained problem

minimize f,(z) = f(z) — pd v, log(—ci(z)), (2.3)

where p is a positive scalar called the barrier parameter, and m is the number of
inequality constraints. The behaviour of the barrier function for a simple bound
constraint x > 1 is illustrated in Fig. 2.2. From this example, we see that the quality
of the log-barrier approximation grows as p approaches zero.

The word “barrier” is apt: the logarithmic barrier grows without bound as a con-
straint approaches zero, thereby preventing iterates from ever traversing the boundary
of the feasible set, and obviating the need for the constraints. Notice from the def-
inition that f,(x) resolves to infinity for all points x that are not strictly feasible.
Therefore, barrier methods only apply to inequality constraints for which strictly
feasible points exist. The philosophy behind barrier methods differs fundamentally
from “exterior” penalty methods that penalize points violating the constraints; see
Chapter 17 of Nocedal and Wright (2006).

From standard results on unconstrained optimization, the solution to (2.3) is
obtained when the gradient vanishes:

Vu(e) = V(@) - u30, Vei() feila) = 0. (2.4)

This defines the set of optimality conditions for the log-barrier unconstrained approx-
imation, conditions that are very much reminiscent of the Karush-Kuhn-Tucker con-
ditions for optimality in constrained optimization (Nocedal & Wright, 2006). We’ve
transformed the problem of finding a constrained minimum into the problem of finding
the root of F),(x), where F,(x) is the gradient of f,(x).

The central thrust of the primal interior-point method is to progressively push
the barrier parameter u to zero at a rate which allows the iterates to converge to the
constrained optimum z*. I've illustrated this process with a small example borrowed
from Fiacco and McCormick (1968). A small convex optimization problem is depicted
in Fig. 2.3, in which the shaded region depicts the feasible set. The optimization
problem is to minimize the linear function f(x) = z1 + 2 subject to the constraint
that 1 > 0, and that x1 and z9 lie above the parabola :c% = x9. The solution to
this problem lies at (0,0). The solutions to four unconstrained approximations to
this problem are also shown in the figure. Witness that as we decrease the barrier
parameter p, the solution to the barrier subproblem approaches the target solution.
The line that connects all these solutions is called the central path—roughly speaking,
it consists of solutions to all barrier subproblems. This concept will soon be important.

Writing out a first-order Taylor-series expansion to the optimality conditions
V fu(x) = 0 about z, the Newton step Az is the solution to the linear equations

VQf#(x) Az = -V f,(z), (2.5)
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Figure 2.3: Illustration of the primal interior-point method for a simple constrained
optimization problem with two variables. The shaded region is the feasible set.

where the Hessian of the log-barrier is derived to be
V2 fu(@) = V2 (@) — n3, V() fei(a) + pd T O, (2.6)

In the above expression, C' is the m x m diagonal matrix with the responses of the
constraints along its diagonal, J = Ve(x) is the m xn Jacobian of the constraints eval-
uated at z, and n is the number of (primal) optimization variables. For conciseness,
I’ve suppressed the dependence of x on the matrices C' and J in the notation.

The barrier Hessian V2 f,,(x) has long been known to be incredibly ill-conditioned.
However, an analysis by Wright (1994) shows that the ill-conditioning is not harmful
under the right conditions. The “right conditions” are that z be within a small
distance® from the central path or barrier trajectory (see Fig. 2.3), which is defined to
be the sequence of isolated minimizers zj, satisfying

Viu(z;) =0 and c(z};) <0. (2.7)
Second-order sufficient conditions, a suitable constraint qualification, and strict com-
plementarity should also hold (Forsgren et al., 2002; Wright, 1998). The bad news
is that the barrier method is ineffectual at remaining on the barrier trajectory, as
it pushes iterates too close to the boundary where they are no longer well-behaved
(Forsgren et al., 2002; Wright, 1995). And, to make matters worse: 1) it is diffi-
cult to minimize the logarithmic barrier function when p is small, as its surface can
vary rapidly near the boundary of the feasible set, and 2) the barrier trajectory gets
narrower as p approaches zero. In practice, one circumvents these problems by mea-
suring closeness to the solution at each value of i (Gay et al., 1996). In the stochastic
setting, however, there is no reliable way to do this.

The primal-dual method takes Newton steps along both the primal variables and

3See Sec. 4.3.1 of (Forsgren et al., 2002) for the precise meaning of a “small distance”. Since =
must be close to the central path but far from the boundary, the favourable neighbourhood shrinks
as p nears 0.
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the Lagrange multipliers. Like classical barrier methods, they fail catastrophically
outside the central path. But their virtue is that they happen to be extremely good
at remaining on the central path (even in the stochastic setting; see Sec. 2.3.2).
Primal-dual methods are also blessed with strong results regarding superlinear and
quadratic rates of convergence (El-Bakry et al., 1996).

The principal innovation is to introduce variables z; = —pu/c;(x), variables that
look very much like Lagrange multipliers. By convention, they are called the dual
variables. From the condition V f,(x) = 0, we recover a “perturbed” version of the
first-order KKT conditions for optimality in constrained optimization:

Vi) +J'Z1
Fu(z,z2) = fC<’Z)1 +l =0, (2.8)

where Z is the matrix with z along its diagonal, and 1 is a vector of ones. The top
row of (2.8) is obtained by substituting z into the log-barrier function f,(z) then
taking its gradient with respect to x, and the bottom row of (2.8) follows directly
from the definition of z. This is precisely the moving target F)(z,z) mentioned
in Sec. 2.1: in the interior-point stochastic approximation method, we decrease the
barrier parameter p over time, and as p approaches zero the target approaches the
solution of the constrained optimization problem.

The KKT system (2.8) consists of two parts: the upper half is the gradient of
the Lagrangian function, and the lower half is the complementarity condition that
arises in constrained optimization. The complementarity slackness conditions (Strang,
1980)—the bottom row of (2.8)—arise directly from the definition of z;. These com-
plementarity conditions are a source of great aggravation, for even when the objective
and constraints are linear, these conditions will always be nonlinear.

It may seem rather remarkable that we’ve managed to derive a perturbed version
of the KKT conditions starting from the log-barrier function. This connection is far
from accidental. To cultivate a better understanding of the behaviour of primal-dual
interior-point methods, I explore this connection in greater detail in the next section.
Note that the material contained in the next two sections (Sec. 2.2.1 and Sec. 2.2.2) is
aimed at those readers who would like to get a firm grasp on the mathematical basis
for interior-point methods, and it this material is not essential for understanding the
main contributions in this chapter.? After that, in Sec. 2.2.3 I derive the primal-dual
search direction.

2.2.1 Connections to duality

The Lagrangian of the constrained optimization problem (2.2) is defined to be

L(z,z) = f(x) + Y i~ zici(x), (2.9)

“Much of the analysis presented in the next section is based on Monteiro and Adler (1989a; 1989b).
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where z is the collection of multipliers corresponding to the inequality constraints
c(x) < 0. The Lagrange dual function is defined to be

q(z) = il;fL(l‘, z), (2.10)

where the infimum is over all x that satisfy the inequality constraints c¢(z) < 0. The
infimum is a generalization of the minimum: the infimum of a collection of points is
defined to be the largest number that acts as a lower bound on this collection. The
Lagrangian function might not have a minimum on the feasible set, in which case the
infimum is defined to be negative infinity (Boyd & Vandenberghe, 2004). Under the
assumption that the objective is convex, the minimum of the Lagrangian function is
achieved when the slope of the Lagrangian function vanishes; i.e. V,L(z,z) = 0.

In order to distinguish f(z) from the dual ¢(z), we refer to f(z) as the primal
objective. A crucial property of the Lagrange dual is that when z > 0, ¢(z) is always
a lower bound on the value of the primal objective at its solution z*. Proving this
property isn’t hard to do; see Sec. 5.1.3 of Boyd and Vandenberghe (2004). This
property is important enough, however, that it is given a special name: weak duality.
Since the Lagrange dual is always a lower bound on the solution to the original
problem, it would make sense to try and find a point z that makes ¢(z) as large as
possible, hence offers the best lower bound. This realization leads to the Lagrange
dual problem:

maximize ¢q(z)

subject to z > 0. (2.11)

Implicitly, there is an additional constraint: the infimum in ¢(z) should not be equal
to negative infinity. Just as we said z is feasible if inequality constraints are satisfied,
we say z is dual feasible if z > 0 and ¢(z) > —oo. The dual problem (2.11) is always
concave—even if the objective is not a convex function and the feasible domain is
not a convex set—so it always has a unique maximum z*. This is easy to show: the
Lagrangian is an affine function of z, hence concave, and the pointwise infimum over
a set of concave functions is also concave.’

These thoughts suggest that we could solve the Lagrange dual problem instead of
the primal (2.2). There are a couple of reasons why this is unlikely work: one, the
dual function might not be available in closed form; two, the solution ¢(z*) to (2.11)
is only a lower bound on f(z*). Under certain conditions, the lower bound is the
tightest possible, meaning f(z*) = ¢(z*), and when this happens, we achieve strong
duality. Strong duality is guaranteed when we have a convex optimization problem,
and an appropriate constraint qualification, such as the linear independence constraint
qualification or Slater’s condition. The proof of strong duality under constraint qual-
ification is not terribly straightforward. See Sec. 5.3.2 of Boyd and Vandenberghe
(2004) for an argument that uses the hyperplane theorem to prove strong duality un-

%See Sec. 3.2.3 of Boyd and Vandenberghe (2004) for an analogous result showing that the supre-
mum preserves convexity.
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der Slater’s constraint qualification, and see Proposition 3.3.9 in Bertsekas (1999) for a
more succinct proof that applies the Mangasarian-Fromovitz constraint qualification.
Since the Lagrange dual at any z is a lower bound on the solution, the difference

n(z,z) = f(x) — q(2) (2.12)

always provides an upper bound on the difference between the value of the objective at
the current point x, and the value of the objective at the solution x*. This difference
is called the duality gap. When = and z are both feasible, it is easy to show that the
duality gap reduces to the simple form

n(z,z) = —c(z)’ 2. (2.13)

This expression provides a useful stopping criterion, as the current estimate at (z, z)
is no less accurate than the value of the duality gap. See Sec. 5.5.1 of Boyd and
Vandenberghe (2004) to see how to use the duality gap to compute an upper bound
on the relative accuracy of the estimate.

We now have all the necessary ingredients to write down the necessary and suf-
ficient conditions for (z,z) to be the primal and dual solution to the constrained
optimization problem: the point must be primal feasible, it must be dual feasible,
the duality gap must vanish, and the gradient of the Lagrangian must also vanish.
(This last condition is needed to ensure that the duality gap represents the difference
between the primal and dual objectives). Putting everything together, we have

V.L(xz,z) =0 (infimum condition)
c(x)Tz2=0 (vanishing duality gap) (2.14)
c(x) <0, 2>0 (primal and dual feasibility).

What we have managed to do for a second time is derive the KKT conditions. Since
the variables z must be positive and responses of the constraint functions ¢(z) must be
negative, the condition that the duality gap is zero is actually equivalent to requiring
that ¢;(z)z; = 0, for all ¢ = 1,...,n, which, in matrix notation, was CZ1 = 0.
These nonlinear equations are called the complementary slackness conditions. The
first condition is often erroneously called the dual feasibility condition, but that would
be incorrect as it is often not needed to ensure that the value of ¢(z) is finite. I have
chosen to call it the “infimum condition” instead.

The only real difference between the conditions for optimality (2.14) and the
primal-dual system (2.8) is the presence of a perturbation y in the duality gap. From
this result, we see that the primal-dual interior-point method has the effect of relaxing
the requirement of a zero gap between the primal and dual objectives.

2.2.2 A note on constraint qualifications

Above, I stated that one of the advantages of the proposed interior-point method for
stochastic approximation is that it can handle a wide range of constraints. In this
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section, I state in precise terms what I mean by “wide range.”

The KKT conditions are necessary for optimality only when the constraints are
linear. Thus, regularity conditions, or “constraint qualifications,” are needed to es-
tablish convergence when the constraints are nonlinear. Such conditions ensure that
a linearized approximation captures the essential geometric features of the feasible
set in the neighbourhood of a point, so we can determine a feasible direction solely
by examining the first derivatives of the objective and the constraints. Stated more
formally, constraint qualifications guarantee that the set of Lagrange multipliers that
satisfy the KKT conditions is both non-empty and bounded. In practice, however, it
is common to encounter degenerate problems for which the set of Lagrange multipliers
is unbounded or, worse, empty. Typically, these problems arise from “over-modeling”
(Gould et al., 2005).

Standard implementations of interior-point methods assume the linear indepen-
dence constraint qualification (LICQ); see, for instance, Wachter (2002). LICQ re-
quires that when z is not strictly feasible, the Jacobian of the active inequality con-
straints must have full row rank (Forsgren et al., 2002). In other words, the gradients
of the active constraints must be linearly independent. This implies that the set of
Lagrange multipliers satisfying the KKT conditions is a single point, so it is easy
to state first-order conditions for optimality. But LICQ is limiting: there are many
examples where Lagrange multipliers exist but LICQ fails to hold.® The big prob-
lem is that if the Jacobian does not have linearly independent rows, then we cannot
expect to isolate a solution using standard Newton steps. In such cases, a stan-
dard interior-point method implementation may converge to a non-stationary point.
Mathematical programs with complementary constraints (Leyffer et al., 2006) are an
extensively studied class of problems that violate LICQ. An important case from the
machine learning literature is the constrained formulation of the group Lasso prob-
lem (Meier et al., 2008; Yuan & Lin, 2006). The alternative Mangasarian-Fromovitz
constraint qualifications (Forsgren et al., 2002) are weaker, hence more general, than
LICQ, but the disadvantage is that they are more difficult to verify.

There are several strategies for coping with constrained optimization problems
that do not satisfy standard constraint qualifications. One approach is to find a well-
behaved system that acts as a suitable approximation to the target system, in that it
has Lagrange multipliers that are close to the ones of interest (Izmailov & Solodov,
2004). This approach is not practical for large problems because it involves computing
a singular value decomposition. According to Leyffer et al. (2006), the most promis-
ing strategies are based on exact penalty reformulations of the constraints. Penalty
approaches are the subject of ongoing research within the numerical optimization
community (Anitescu et al., 2007; Chen & Goldfarb, 2006; Gould et al., 2003).

5See Fletcher et al. (2006), Forsgren et al. (2002), and Izmailov and Solodov (2004) for examples
where LICQ fails to hold but degenerate solutions exist.
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2.2.3 The primal-dual search direction

Just as we did for the primal interior-point method, to obtain the search direction
(Azx, Az) we form a first-order Taylor series expansion of the nonlinear system (2.8)
about point (x, z). The primal-dual Newton step is then the solution to

= —Fy(x, 2). (2.15)

VEL(x, ) [ Ar ]

Az

Expanding the terms above, we obtain

woJr Az | _ Vi) +J'Z1 (2.16)
zZJ C Az | CZ1+ pul ’ '
where W the Hessian of the Lagrangian,
W=H+Y" V), (2.17)

and H is the Hessian of the objective. Typically, the Hessian is not available in the
stochastic approximation setting, so we replace H by some other symmetric positive
definite matrix such as the identity matrix. Note that the exact value of the Hessian
is not needed to for asymptotic convergence of the primal-dual interior-point method;
refer to Sec. 2.3. For further discussion on replacing the Hessian of the objective by
a suitable approximation in the stochastic setting, see Sec. 2.4.

The primal-dual Newton step (2.16) provides further insight into the role of the
barrier parameter p. By setting u to zero, for example, the search direction (Az, Az)
attempts to completely eliminate the duality gap. Normally, this won’t be a particu-
larly good idea because it regularly happens that only a small step can be taken along
this so-called affine search direction before the constraints are violated. A less aggres-
sive approach is needed: rather than attempt to eliminate the duality gap entirely, it
is better to set a less ambitious goal and attempt to reduce the duality gap by some
factor o. From these considerations, a reasonable choice for the barrier parameter is

w=on(zx,z)/m. (2.18)

I divide the target duality gap by m because, as you might recall, the original condition
c(z)Tz = 0 is separated into m complementary slackness conditions CZ1 = 0. When
the iterates are not primal and dual feasible, setting u according to the duality gap is
heuristic, as the quantity n(z, z) is no longer the difference between the primal and
dual objectives.

One important issue we haven’t touched upon is the choice of centering parameter
o. The choice for o in Mehrotra’s predictor-corrector algorithm (Gould et al., 2005;

Lustig et al., 1992) is given by
e
o= (naff(xaz)) 7 (2.19)
n(z, z)
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where 7(x, z) is the duality gap at the current point (z, z), and n,¢(x, z) is the duality
gap that would be achieved if we were to follow the largest feasible step along the
affine scaling direction; i.e. the solution to (2.8) with ;1 = 0. The exponent e is usually
set to 3, but there is no strong reason for this choice. In the stochastic setting, I found
that a smaller number around 2 worked better.

Let me give a brief rationale behind this choice of centering parameter. If a step
along the affine scaling direction is able to make a large reduction in the duality gap,
then we might as well follow it closely and make o small. When ¢ = 0, we get the
pure, unperturbed Newton or “affine scaling” step. On the other hand, if the affine
scaling direction makes very little progress, we should emphasize a centering step,
since it will set the stage for a larger reduction in the next iteration. At the o = 1
extreme, the Newton direction defines a step that makes no attempt to reduce the
duality gap, and solely tries to center the iterate so that the pairwise products x;z;
are identical to the average of the current duality gap.

In the stochastic setting, it is unclear whether the predictor-corrector update is
a useful heuristic, as we cannot perform line search to assess the amount of progress
made by the affine search direction. Regardless of how one updates the centering
parameter o, it is important to guarantee that it gradually approaches zero.

2.2.4 Solving the primal-dual system

Usually, most of the computational effort in primal-dual methods is directed at com-
putation of the Newton search direction (2.16). Whenever possible, one should exploit
the structure of the primal-dual system to reduce the effort.

Through block elimination (subtracting J7C~! times the bottom row from the
top row to obtain a lower triangular system) the Newton step Az is the solution to
the symmetric “augmented” system

(W — J'S D) Az = ~Vf,.(2), (2.20)

where ¥ = C7'Z. Recall, W is the Hessian of the Lagrangian; see Eq. 2.17. The
dual search direction is then recovered according to

Az = —(z+ p/c(z) + XJAx). (2.21)

Under the provision that our optimization problem is convex, the matrix appearing
in the augmented system (2.20) is symmetric positive-definite.

The matrix appearing in the augmented system (2.20) is likely to be highly ill-
conditioned, but due to the stability analysis above we can still solve for Az using
a standard factorization such as the Cholesky decomposition A = RT R, followed by
forward and backward substitutions (Strang, 1980). In the application to on-line
L; regularization (Sec. 2.5), we arrive at the solution cheaply because the matrix
is extremely sparse, and it has regular structure that is easily exploited by sparse
matrix factorization algorithms. For less regular sparsity patterns, it may be useful
to try heuristics that rearrange the equations, say, by minimizing the bandwidth of
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the matrix to prevent excessive “fill-in” of the Cholesky factors. This is the strategy

adopted by the Reverse Cuthill-McKee method (Duff et al., 1986).

Computing Az in this manner could, regrettably, require factorizing a dense, sym-
metric matrix, even when the original primal-dual system is sparse. One commonly
encounters Jacobian matrices that look like

J = X X X

where the x’s correspond to nonzero entries in the matrix. This Jacobian will produce
dense sub-blocks in the augmented system (2.20). In such case, it can be worthwhile
to factorize the full primal-dual system (2.16) instead. By multiplying the bottom row
of (2.16) by Z~!, we can work with a symmetric version of the primal-dual system:

woJr Az ] Vi) +J'Z1 599
RSN | e R R b (222)
It is easy to see how this system becomes ill-conditioned: the diagonal entries of ¥~!
corresponding to the active constraints grow without bound as pu approaches zero. The
symmetrized primal-dual system (2.22) is not positive-definite, but it does correspond
to a saddle point problem; see p. 4 of Benzi et al. (2005). The matrix in (2.22) is
guaranteed to be non-singular (this is easy to show), and when the optimization
problem is convex, the matrix is symmetric quasidefinite (Vanderbei, 1995). Any
symmetric quasidefinite matrix A yields a symmetric factorization PTAP = LDLT,
where L is lower triangular, D is diagonal, and P is a permutation matrix.

When the matrix in (2.22) is indefinite, forming a diagonal matrix of pivots D is
unstable, or impossible. Nevertheless, it is still important to take advantage of sym-
metry. The simple suggestion of Bunch and Parlett (1971) is to extend the notion of
pivots to 2 x 2 blocks. Methods based on block-pivoting preserve the stability and
symmetry of symmetric positive-definite factorizations, and require no more storage
than a Cholesky factorization (Duff et al., 1986). Mature implementations of sym-
metric indefinite solvers use supernodal techniques to identify pivots that preserve
sparsity, and they behave well in the face of the types of ill-conditioned matrices
found in interior-point methods (Amestoy et al., 2001; Schenk & Gértner, 2006).

Because of the ill-conditioned nature of the systems (2.16) and (2.20), direct fac-
torization techniques are considered to be the most reliable. However, sparse matrix
implementations may still scale poorly with problem size. The advantage of itera-
tive Krylov subspace methods (Saad, 1996) is that they rely only on matrix-vector
products, so they are ideally suited for large, sparse systems. To implement inexact
or “truncated” Newton steps correctly, a suitable termination criterion is needed to
ensure that progress is made toward the solution at each iteration of the interior-point
solver. In primal interior-point methods, this is relatively straightforward to achieve
through existing work on truncated Newton methods for unconstrained optimization
(Eisenstat & Walker, 1994); for an example of this approach, see Kim et al. (2007).
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However, inexact steps are more difficult to implement in primal-dual interior-point
solvers, in part due to changing accuracy requirements (Cafieri et al., 2006). And
in the stochastic setting, it is not clear what these accuracy requirements should
be. Another critical issue is the choice of a suitable preconditioner to handle the
ill-conditioned nature of the system. Preconditioners for interior-point methods have
received a great deal of attention; see Rees and Greif (2007) for a recent review.

2.3 Analysis of convergence

So far, I’ve advocated the primal-dual search direction from interior-point methods
for stochastic approximation, but I have yet to explain why this is a sound strategy.
The explanation has two parts. First, I discuss conditions upon which the sequence
of iterates {x} generated by the algorithm converges almost surely to a solution
x* of the constrained optimization problem (2.2) as the amount of data or iteration
count goes to infinity. This isn’t an especially practical result because it requires us
to wait for a very large (i.e. infinite) amount of time, but it is nonetheless important
to establish. Second, I demonstrate dependable behaviour of the iterates z; under
finite-precision arithmetic.

2.3.1 Asymptotic convergence

In this section, I discuss conditions upon which our method will eventually converge
to a solution of the constrained optimization problem (2.2). First, I state an informal
proposition for asymptotic convergence and give the conditions that must be satisfied
in order for the proposition to apply, then I give an incomplete proof of this proposition
that builds on the theory of stochastic approximation and interior-point methods.

I should also state upfront that there is a small gap in the proof, hence the
admission that it is “incomplete.” The problem stems from the fact that the time-
varying system Vf,, (x) = F(x, k) must converge to a limiting value V f(z) = F(z)
for any x as k goes to infinity. This holds trivially for any point x that is strictly
feasible, and it has also been established for any point lying on the boundary that is
also a constrained minimizer z*. But it remains then to show whether this result holds
for boundary points that are not also constrained minimizers. It is quite possible that
this gap can be resolved by generalizing some of the mathematical results of Wright
(1992), but this is only a conjecture at this point in time. Otherwise, it may be
possible to reason that the iterates will never reach a boundary point that is not a
constrained minimizer, hence we do not have to worry about these points. In any
case, resolving this “gap” is an interesting open question in its own right.

Assumptions. I establish convergence under the following fairly standard con-
ditions. The conditions I outline here are intended to be easy for the reader to verify
at the expense of being overly stringent.” The proposition does, however, require
one condition regarding the sequence of barrier parameters that may be difficult to

"By contrast, some of the results from the theory on two-time scale approximation (Borkar, 2008)
are simpler to state and apply, but the conditions are much harder to verify, hence are not as useful.
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verify directly. Further analysis of the barrier function may yield more transparently
applicable conditions. This is left to future work.

Some of the conditions may be weakened slightly by applying more general re-
sults from the stochastic approximation and constrained optimization literature. For
a more detailed discussion of alternative conditions, including motivation for the con-
ditions listed here, see the proof below.

1. Unbiased observations: the stochastic gradient g, at iteration k is a discrete-
time Martingale difference with respect to the true gradient V f(xy); that is,

E(gk | xk, history up to time k) = V f(zy). (2.23)

This is a very commonly stated condition in the stochastic approximation liter-
ature (Berteskas & Tsitsiklis, 1996; Bottou, 1998; Spall, 2003). This condition
is more stringent than necessary, and less restrictive conditions require only that
the random variables g form a Markov chain (Ljung, 1977), or that they follow
a stationary ergodic process (Métivier & Priouret, 1984). Andrieu et al. (2005)
also states a convergence result under very general conditions. The applications
to on-line learning presented in Sec. 2.5 both satisfy the Martingale independence
condition (2.23) assuming that the training examples are derived independently.

2. Sequence of step sizes: The step sizes ai must approach zero, but they cannot
approach zero too quickly. Precisely,

klimm ar =0, S gar =00, and Y ;L ai < oc. (2.24)
These are standard conditions used throughout the stochastic approximation lit-
erature. In practice, imposing these conditions on the maximum step sizes aj in-
stead (see Fig. 2.1) will guarantee that the conditions are satisfied for all a; < a.

3. Bounded variance: the variance of the gradient estimates g is bounded.

4. Convexity: The objective f(x) and constraints ¢(z) are convex.

5. Smoothness: The objective f(x) and constraints c(z) are twice continuously
differentiable (Gill et al., 1986). This assumption is probably much stronger than
necessary, and is imposed mainly to simplify the proof.

6. Strict feasibility: There must exist a point = that is strictly feasible; that is,
c(z) < 0. This is otherwise known as Slater’s condition in the convex analysis
literature (Boyd & Vandenberghe, 2004).

7. Bounded minimizers: The set of minimizers {z*} of the constrained optimiza-
tion problem (2.2) is nonempty and bounded.

8. Sequence of barrier parameters: The barrier parameters j;, must be positive,
and must approach zero in the limit: limg _, o pux = 0. In the asymptotic regime
considered here, we do not need to be concerned that the barrier parameters
might converge “too quickly” to zero, as was the case for the step sizes ax. Only
in practice (under a finite number of iterations) is this a factor, out of concern
for deviations from the central path. There is a further condition (2.40) that
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is jointly imposed on the sequence of barrier parameters and step sizes. This
condition is imposed in order to ensure that the iterates x; remain bounded.

Proposition (conjectured). Suppose Assumptions 1 through 8 hold. Then the
primal iterates xj of the interior-point stochastic approximation method (Fig. 2.1)
converge almost surely to a global minimizer 2* of the constrained optimization prob-
lem (2.2); that is, as k approaches the limit, ||z — 2*|| = 0 with probability 1.

Proof (incomplete). In effect, to prove convergence we need to show three
things: that the time-varying nonlinear system (which is the gradient of the log-
barrier function) converges to some limit point as k goes to infinity; that the iterates
T converge to a stationary point of the time-varying system; and that any stationary
point of the time-varying system is indeed the solution z* of the constrained opti-
mization problem (2.2) as k goes to infinity. Below I explain why this proof procedure
is not completely sound.

The proof sketch consists of four parts. In Part I, I show that the primal iterates
xy, of the primal-dual interior-point method eventually converge to a solution of the
unconstrained approximation (2.3) for given p > 0. For this first part, I assume the
deterministic case when there is no noise; that is, g = V f(zx). A principal aim of this
first part is to introduce the proper technical terms needed to investigate convergence
of the primal-dual interior-point method in the remainder of the proof. In Part II, I
generalize the claims of Part I to the case when the gradient estimates are stochastic.
For this, I will need to define precisely what I mean by the stochastic process, and
I will need to place some additional assumptions on the behaviour of the stochastic
process. Part III examines the limiting behaviour of the interior-point method as the
barrier parameter p approaches zero. The key result is that the limit of the sequence
of unconstrained approximations recovers a solution to the constrained optimization
problem (2.2). The final part, Part IV, assembled Parts I, II and III to give us the
desired result (with of course a caveat, as I detail below).

Part I of proof sketch: unconstrained optimization and the log-barrier
method. First consider the basic unconstrained optimization problem, in which the
objective is to minimize some function f(x), where z € R™.

The most ambitious goal is to find a global minimizer, which is a point x* such
that f(z*) < f(z) for all z € R™ (Nocedal & Wright, 2006). Usually we can only hope
to find a local solution to the optimization problem. A point x* is a local minimizer if
there exists a neighbourhood of z* such that f(z*) < f(z) for all points 2 within the
neighbourhood. A neighbourhood of a point x is the set of all points y within some
specified distance 6, ||z — y|| < §, the distance here being defined according to some
vector norm ||u|| such as the Ly or Ly (Euclidean) norm; see Gill et al. (1986).

When there are constraints on the choice of x (see Part III), we will need to
guarantee that the set of minimizers z* is bounded. A set S is bounded if there is a
real number ¢ such that the norm of all the points = within S is contained by this
real number; i.e. |lz|| < 0 holds for all points € S (Derrick, 1984). It is easy to
guarantee that the set of minimizers is bounded in the unconstrained case, as we only
need to require that f(z) is bounded from below.
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Now suppose that the objective is convex. That is, the line segment joining any
two points x and y lies above the graph of f(x) (Berger, 1990). A key result is that
if f(z) is convex, then any locally optimal point z* is also a globally optimal point.
The proof consists in showing that if we suppose that x* is not globally optimal—i.e.
there is a point y such that f(y) < f(x)—then this leads to a contradiction because
this will imply that we can always find a point  within the neighbourhood of z* such
that f(z) < f(x*); see Boyd and Vandenberghe (2004). Thus, under convexity we
can use “local” and “global” interchangeably. This result is easily extended to the
case when we have a convex feasible set, the case we tackle in Part III.

Next, consider a gradient descent algorithm with decreasing step sizes for solving
the unconstrained optimization problem, in which ay is a decreasing sequence of step
sizes. The algorithm consists of iterately updating the iterates according to

Tht1 = Tk — aka(xk), (2.25)

and the step sizes aj are chosen so that they approach zero, but that they do not
approach zero too quickly. Mathematically speaking, ap — 0 as k& — oo, and
Yr_gor = oo. Under the additional assumption that the gradients of f(x) are
Lipschitz-continuous, Proposition 1.2.4 of Bertsekas (1999) shows that the sequence
of iterates {z} will converge to the a minimizer z* of the unconstrained optimization
problem with convex objective f(z).® Since the gradient descent algorithm does not
monitor the progress of the iterates xj with some suitable merit function, we cannot
guarantee descent at every iteration. However, we can legitimately guarantee descent
if the step sizes are sufficiently small.

Proposition 1.2.4 of Bertsekas (1999) actually applies to a much wider range of
algorithms than the one I just described. It applies to all algorithms with iterative
updates of the form

Tp1 = Tg + apAxy, (2.26)
in which the search direction makes an angle with the gradient greater than 90 degrees:
Vf(ack)TA:rk < 0. (2.27)

The search direction Axy is guaranteed to produce a decrease in the objective f(z)
provided the step length is sufficiently small (Nocedal & Wright, 2006). The rule (2.27)
plainly applies to any search direction of the form

Azy, = —B. 'V f(zp), (2.28)

where By is a symmetric positive definite matrix. This corresponds to the Newton
direction when By, is the Hessian of the objective (Gill et al., 1986).

8To guarantee Lipschitz continuity, it is sufficient to guarantee that f (z) is twice continuously
differentiable (in other words, f(z) is smooth; see Gill et al., 1986) and that the second-order partial
derivatives are bounded.
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The primal (2.5) and primal-dual (2.20) interior-point search directions are also
of the form (2.28), so they satisfy the descent criterion as well. Furthermore, under
the assumption that the objective f(x) and constraints c¢;(z) are convex, the log-
barrier function f,(x) is convex as well. This is so because —log(—u) is convex and
monotonically increasing in u (Boyd & Vandenberghe, 2004). By similar logic, the
gradient of the barrier function is Lipschitz-continuous provided the objective and
constraints are Lipschitz-continuous. Therefore, we can directly apply the results of
unconstrained optimization above to the constrained problem formulated using the
log-barrier f,(x) for a given g > 0. This also means that we can ignore the dual
variables z, hence the dual variables do not appear in the construction of the proof
below (they only resurface in the second part of the convergence analysis, Sec. 2.3.2).
We just need to make sure that when we take a step (2.26), the step size ay, is small
enough that the new iterate remains strictly feasible. This is the only necessary
modification. Because the opposite direction of the gradient will always point us
away from the boundary of the feasible region, and because any minimizer of the
log-barrier function is strictly feasible, we will always be able to find a positive step
size ay, that keeps us in the feasible region; see Theorem 4 of Wright (1992) for details.
Note that I will return to Theorem 4 of Wright (1992) in Part IIT of the proof sketch.

Part II of proof sketch: stochastic approximation. Now I turn to the
second part of the proof, where I establish asymptotic convergence of the primal-dual
interior-point method with stochastic estimates of the gradient.

To be as clear as possible, I introduce the following definitions. I treat each
stochastic gradient measurement as a function gi(x,u) of the current iterate x and
the random variable U with possible values u distributed according to some known
density function p(u|z). This definition follows the description of Berteskas and
Tsitsiklis (1996). I then occasionally use the shorthand gi = gr(x, ug). (In the more
general scenario, each uy could also depend on the previous samples uy for k' < k.)
In the basic Robbins-Monro formulation, when the nonlinear system does not change
with time, gg(z,u) = g(x,u).

First consider the basic stochastic approximation method outlined in Sec. 2.1.
The convergence question is to establish conditions upon which the Robbins-Monro
recursion (2.1) will converge to a point z* such that F(z*) = 0. This is of course
equivalent to convergence to a stationary point x* of the unconstrained optimization
problem when F(z) = V f(x). There are two equivalent approaches to understanding
the Robbins-Monro recursion. The first is to identify a mapping between the nonlinear
system F'(z) and the expectation of the stochastic gradient estimates:

E[g(az,U)] :fp(u]a?)g(x,u)du:F(x), (2‘29)

The second approach is to treat the stochastic gradient measurement as the true
response of the system plus some random noise:

g(x) = F(z) + &, (2.30)
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where ¢ is drawn from some specified probability density p(¢ | ). This is the approach
taken in the analysis of the classic Kiefer-Wolfowitz stochastic gradient algorithm. I
will follow the first approach.

Let me now briefly provide some motivation for the conditions (2.24) on the se-
quence of step sizes. Suppose for a moment that » p. ,ar < co. Then the stochastic
approximation iterations will be confined to lie within a finite radius from the start-
ing point zg, and if the desired solution z* happens to be outside that radius, the
algorithm will never reach the solution. This motivates the second identity in (2.24).
Usually, the third identity in (2.24) is imposed to ensure that the sequence {xj} is
bounded. Weaker conditions than (2.24) have been used to prove asymptotic conver-
gence. For further discussion on this matter, see Berteskas and Tsitsiklis (1996).

There are two common approaches for establishing asymptotic convergence of
stochastic approximation. One approach is to introduce a Lyaunov function (Lu-
enberger, 1979) that provides a measure of the distance from the solution. In the
stochastic setting, the Lyapunov function is taken to be the expected update direc-
tion, and then Martingale theory is used to study convergence of this function (Bottou,
1998; Métivier, 1982). Proposition 4.1 of Berteskas and Tsitsiklis (1996) is a clear
example of the Lyapunov approach. It proves that the limit point of the sequence of
iterates {x} converges to a stationary point * under the conditions outlined in the
next paragraph.

The first condition is a smoothness condition on the nonlinear system, namely
that F'(z) must be Lipschitz-continuous. Second, the sequence of step sizes must
satisfy the conditions (2.24) outlined earlier. The third condition is that there exist
a positive constant ¢ such that

cl|F()|* < —F(z)" B[g(x,U)], (2.31)

where ||u|| is the Euclidean norm of u. When F(z) is the gradient of the objective,
this condition plays an analogous role to the descent condition (2.27) in Part I. The
fourth and final condition is that

Ellg(z, U)|* < b+ V|[F(x)|?, (2.32)

for positive constants b and o’. This ensures that the gradient estimates have a
bounded second moment, which is very similar to the “bounded variance” condition
I imposed at the beginning of this section.

The another widely adopted approach to analyzing the convergence of stochas-
tic approximation was developed independently by Ljung (1977) and Kushner and
Clark (1978). The basic idea of this approach is to relate the Robbins-Monro re-
cursion (2.1) to an ordinary differential equation (ODE), and identify limit points as
equilibrium points of the differential equation (or points belonging to the invariant
set of the differential equation). So long as the initial point x( lies in the domain
of attraction (Ljung & Soderstrom, 1983) of the differential equation, the sequence
{z}} will reach the invariant set for large k. This is the approach I will follow for
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analyzing the interior-point stochastic approximation method, mainly because it has
been frequently applied to a broader context when the nonlinear system varies over
time, and this is precisely the kind of system that procedes from the interior-point
stochastic approximation method.

A caveat of the ODE approach is that it does not, strictly speaking, give us
a convergence result. Intuitively, the ODE analysis only applies to points within
the domain of attraction, so we must make sure that sequence {x} touches the
domain of attraction infinitely often. Thus, a bounded sequence is needed to guarantee
convergence. (One way to accomplish this is to project the iterates into some compact
set, as suggested by Ljung and Séderstrom (1983).) My convergence analysis follows
from Métivier and Priouret (1984) because that article provides a clear and unified
presentation of the ODE analysis of Kushner and Clark (1978) and Ljung (1977), and
uses Martingale arguments to prove the required convergence result. First I state a
slightly simplified version of the theorem of Kushner and Clark (1978) as it is presented
in Métivier and Priouret (1984), and use this theorem to establish convergence of the
Robbins-Monro recursion when the nonlinear system F'(x) is time-invariant. Next, I
generalize this convergence result to the case when the system changes over time.

Theorem (Kushner & Clark, 1978). Suppose that the sequence of iterates
{z}} is defined by the recursion

Tpy1 = Tk — ap(F(zr) — B — &), (2.33)

where & is the stochastic process and [ is a deterministic term converging to zero
almost surely (i.e. supy ||zg]] < o0), and {ax} is a sequence of step sizes satisfy-
ing (2.24). Provided that the iterates xj are bounded, then there exists a compact
set belonging to a domain of attraction of locally stable point x* that contains in-
finitely many iterates xj for which limy _, o xp = x*.

The theorem of Kushner and Clark (1978) is easily applied to the Robbins-Monro
algorithm (2.1) by setting g = F(zr) — & and [, = 0. If we could prove that the
sequence of iterates {xy} is bounded with probability one, then we would have conver-
gence to a stationary point x*. The boundedness of the sequence can be guaranteed
under the following conditions: E||g(x,U)||? is bounded from above, and

F(x)'(xz — %) > 0. (2.34)

See Métivier and Priouret (1984) for a proof of this result that uses a quasi-martingale
argument under slightly looser restrictions.

The condition (2.34) appears to be rather limiting, but it actually holds whenever
F(z) =V f(x) and f(z) is convex and differentiable. It follows from the fact that

fly) = f@) + V@) (y - ), (2.35)

holds for all  and y. By replacing y with the stationary point z*, and by using the
fact that f(z*) < f(x), we recover the condition (2.34).
Next I consider the case when the nonlinear system changes over time, so that the
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expectation of the stochastic gradient estimates follows
Elg(a,U)] = [p(u|2) gi(a,u) du = F(a, k). (2.36)

This variation of Robbins-Monro fits within the Kushner-Clark framework by setting
By = F(x) — F(z,k), on the condition that there exists a F'(x) such that

lilgn |F'(z) — F(z,k)|| = 0. (2.37)

This condition is needed to ensure that {3} converges to zero, as required above. It
is precisely this condition that reveals a gap in the proof, as I explain in Part IV.
For convergence to hold in the time-varying case, we need an additional condition:

2r=oak |F(z,k) = F(z)|| < 0. (2.38)

This condition will of course be satisfied if the system converges to F'(z) at a finite
point in time, but this might cause a small hiccup for asymptotic convergence of the
stochastic interior-point method. We reexamine this issue in Part IV.

Part III of proof sketch: convergence of the interior-point method. In
this part, I look at the convergence properties of the log-barrier method as the barrier
parameter p is driven toward zero. Under the assumption that the initial point z¢
is strictly feasible, the convergence proof is to show that as we decrease the barrier
parameter u, the solution the barrier subproblem approaches the solution of the
constrained optimization problem (2.2). The proof is considerably simpler for convex
programs, so I will use the results of Wright (1992) rather than those of Forsgren
et al. (2002). Wright (1992) assumes throughout that the objective and constraints
are twice continuously differentiable. In Part IV, I will combine these results with the
stochastic approximation convergence results from Part II.

First, I state some basic definitions for constrained optimization. A point z is
feasible if it satisfies all the constraints, and it is strictly feasible if all the constraint
functions are strictly positive. A point z* is a local minimizer if it is feasible and
there exists a neighbourhood of x* such that f(z*) < f(z) for all feasible points x
within the neighbourhood. Note that the feasible region is convex because it is the
intersection of a collection of m convex sets. This fact means we do not have to worry
about topological inconsistencies that could arise when the interior of the feasible set
is not the same as the strictly feasible region (Forsgren et al., 2002).

There are three possible constrained optimization situations to consider. In the
first case, the minimum of the objective f(x) lies in the interior of the feasible set.
This case is not particularly interesting because the constraints have no effect on the
solution. In the second case, the unconstrained minimizer of f(x) is infeasible. In
the third case, f(z) is unbounded below when the constraints are removed. In these
last two cases, the constrained solution lies on the boundary of the feasible set. As
the barrier parameter p decreases to zero, intuition suggests that minimizers of the
unconstrained approximation will converge to a constrained solution that lies on the
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boundary of the feasible set. However, there are two possible complications. One, the
barrier method can never recover a minimizer lying on the boundary of the feasible
set. Two, for smaller values of u we observe an increasing steepness near stationary
points of the log-barrier function. These two difficulties are resolved in Theorems 4
and 5 of Wright (1992).

Since local unconstrained minimizers are defined in terms of bounded sets, we
first need to ensure existence of this bounded set for every log-barrier function f,,(z)
(Forsgren et al., 2002). Theorem 4 of Wright (1992) guarantees boundedness of
barrier function level sets. This property is key because it establishes that the set
of minimizers of the barrier function is bounded. There are only two conditions to
this theorem: the strictly feasible region is nonempty, and the set of unconstrained
minimizers is bounded.

The main result is Theorem 5 of Wright (1992). I restate parts of it here.

Theorem (Wright, 1992). Provided that {ux} is a decreasing sequence of
positive barrier parameters such that limy oo pux = 0, f(z) and c(z) are convex
functions, the set of constrained minimizers is nonempty, and there is at least one
point that is strictly feasible, then we have that:

(a) there exists a bounded and closed set S such that for all k, every minimizer
xy, of the barrier subproblem (2.3) with barrier parameter y is strictly feasible
and lies in 5}

(b) any sequence of minimizers {xy} to the unconstrained approximations with
barrier parameters {u} has at least one convergent subsegence, and every limit
point of {zj} is a minimizer of the constrained optimization problem (2.2);

(c) for any sequence of minimizers {zx} to the unconstrained approximations with
barrier parameters {s}, limg o0 fu, (zx) = f(2*).

The proof of this theorem has two main parts. The first part verifies the existence
of the bounded set S containing the minimizers of all the unconstrained approxima-
tions. In order to show this result, this first part of the proof uses the fact that as we
decrease p, the value of the objective f(x) and the response of each term log(—c;(z))
at each unconstrained minimizer x must decrease. Since the sequence {zy} must be
bounded, it contains at least one convergent subseqence with some limit point . The
second task is to show that & will always be a minimizer x* of the constrained opti-
mization problem. The proof of this second part is treated in three separate cases:
1) when x* is strictly feasible, 2) when x* is not strictly feasible but & is strictly
feasible, and 3) when neither «* nor & are strictly feasible. Part (c) of the theorem
evidently holds when x* is strictly feasible, so the only challenge is to show that it
holds when x* lies on the boundary of the feasible set.

Note that this theorem only requires that the objective and constraints be contin-
uous; see Forsgren et al. (2002). Thus, it may be possible to loosen the smoothness
assumption stated at the beginning of this section.

Part IV of proof sketch: assembling the parts. In Part I, I explained how
the barrier method retains feasibility of the iterates xj, and how the primal-dual
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search direction gives us a direction of descent under certain conditions. In Part II, I
explained how the iterates xj of the interior-point method with a primal-dual search
direction and stochastic estimate of the gradient converge to a minimizer #* under
certain assumptions. In Part III, I showed that the unconstrained minimizers of the
barrier subproblems (2.3) coincide with the minimizers of the constrained optimization
problem as k approaches the limit.

The final task is to apply the results of Part III to the stochastic setting with
a time-varying system treated in Part II. This is accomplished by setting the time-
varying system to the gradient of the log-barrier function,

F(:L‘, k) = vf#k (x)v (2'39)

then gy is the gradient of the log-barrier in which V f(zy) replaced by a noisy estimate.
Recall, Theorem 4 Wright (1992) as I stated in Part III guarantees that each set of
unconstrained minimizers to the barrier subproblem (2.3) is bounded, which is of
course necessary in the stochastic setting as well. The remainder of the convergence
conditions have been stated at the beginning of this section.

For any point x that lies within the strictly feasible region (which coincides with
the interior of the feasible region when we have a convex optimization problem), it is
easily shown that limjy_, o V f,(z) = f(x). Therefore, the required condition (2.37)
holds for any strictly feasible point x.

The difficulty stems from the case when z lies on the boundary of the feasible
set. It is clear that (2.37) does not hold for such an z, hence we need a weaker
condition than (2.37) to apply the results of Métivier and Priouret (1984) to interior-
point methods. From Part (c¢) of Theorem 5 in Wright (1992) as it is stated above,
we know that it can be shown that limy _, oo V f,(2) = f(2*) for any sequence {x}
of unconstrained minimizers, even when x* lies on the boundary of the feasible set.
Intuition dictates that we need an analogous result for a broader range of sequences—
the result that stated above that applies solely to the sequence of unconstrained
minimizers is clearly insufficient. The general results in the interior-point literature
on path-following methods (Wright, 1997) suggest a strategy for resolving this problem.

I conclude this proof sketch with a couple additional points.

First, note that Theorem 5 of Wright (1992) requires that {ux} be a decreas-
ing sequence. This condition is not necessary for convergence of the interior-point
stochastic approximation method because we only need the barrier parameters to
decrease within finite intervals.

Second, I mentioned a slight “hiccup” in Part IIT arising from the condition (2.38).
For the interior-point stochastic approximation method, this condition would be

2 k=0 @k IV fu(2) = V()] < oo. (2.40)

For peace of mind, it is certainly possible to satisfy (2.40) by designing the sequence
of step sizes {a} and the sequence of barrier parameters {y} so that {ax} and the
sequence {||V f,, () — V f(z)||} are both bounded from above by the harmonic series
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{1} (Cormen et al., 2001). In practice it may be safe to ignore this matter.

2.3.2 Considerations regarding the central path

The object of this section is to establish that computing the stochastic primal-dual
search direction is numerically stable. By “stable,” I mean that small perturbations
in the gradient estimate g will not lead to large perturbations in primal-dual search
direction A0 = (Az, Az). Mathematically speaking, the computation is stable when
the ratio ||0A@]|/||0g] is never large, where dg is a perturbation of the gradient esti-
mate and JAf is a perturbation of the primal-dual search direction Af (Trefethen &
Bau, 1997). The concern is that noisy gradient measurements will lead to wildly per-
turbed search directions for x and z, hence a rigorous analysis of numerical stability
is even more crucial here than in the standard, non-stochastic setting.

As I mentioned in Sec. 2.2, interior-point methods are surprisingly stable provided
the iterates remain close to the central path, but the prospect of keeping close to the
path seems particularly tenuous in the stochastic setting. The key observation is that
the central path is itself perturbed by the stochastic gradient estimates. Following
arguments similar to those presented in Sec. 5 of Forsgren et al. (2002), I show that
the stochastic Newton step (2.16) stays on target.

For a given p, suppose that (z,z) is the root of the nonlinear system of equa-
tions (2.8). Implicitly,  and z are functions of p, and I'll write the relationship
between p and (x,z) as 0(u) = (x, z). This is a path in real space—in fact, it is the
central path. Without knowing this function exactly, we can still compute the rate of
change of (z,z) with respect to p via implicit differentiation (Strang, 1991).

I define the noisy central path as 6(u,e) = (z,z), where (z,z) is a solution to
F,(x,z) =0, in which the gradient V f(x) is replaced by a noisy estimate g = V f(x)+
.9 Suppose we are currently at point 8(u,e) = (, z) along the path, and the goal is
to move closer to 8(u*,e*) = (x*, 2*) by solving (2.16). One way to assess the quality
of the Newton step is to compare it to the tangent line of the noisy central path at
(u,€). If the tangent line is a fairly reasonable approximation to the central path
O(u, ), then a step along the tangent line will make good progress toward (z*, z*).
Taking implicit partial derivatives at (z, z), the tangent line is

O(u)(n*,e™) = O(p,€) + (1" — M)aeg:g) + (e" - 6)6‘9(;5’6)

= , (2.41)

9T’ve implicitly assumed here that all the entries of the gradient vector are perturbed by the same
amount, but it is straightforward to extend my line of reasoning to the case when each coordinate
has its own noise term.
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such that
H JT
zZJ C

with ¢g* = Vf(x) + ¢*. Since (z,z) is the solution to Fj,(z,z) = 0, the Newton
step (2.16) at (x, z) with perturbation p* and stochastic gradient estimate g* is the

solution to
EASIb 249

In conclusion, if the tangent line (2.41) is a fairly reasonable approximation to the cen-
tral path, then the stochastic Newton step will make good progress toward 0(u*,e*).

Having established that the stochastic algorithm closely follows the noisy central
path, the analysis of Wright (1998) directly applies to computation of the search di-
rection with noisy estimates of the gradient, in which roundoff error (€pachine) in the
analysis is occasionally replaced by gradient noise (¢). I assume here that the reduced,
symmetric positive-definite system (2.20) is being used to compute the primal search
direction Az. Similar results hold for computation via the indefinite primal-dual sys-
tem (2.16).'° Numerical stability under finite-precision arithmetic and stochasticity
of Vf(z) is of fundamental concern, particularly in computing the entries of the ma-
trix W — JT'X.J, computing the right-hand side of (2.20), and computing the solution
to Az and Az using a backward stable algorithm. I take a few moments to step
through Wright’s line of reasoning that establishes some vital stability properties of
primal-dual iterates that closely follow the central path.!! The key points of Wright
(1998) are as follows.

When solving for x in the linear system of equations Ax = b using a backward
stable algorithm such as the Cholesky factorization, the computed solution can be
characterized as the exact solution to a system with perturbed matrix A and unper-
turbed vector b (Trefethen & Bau, 1997). In other words, a backward stable algorithm
computes the correct answer to a slightly wrong problem. We need to consider three
sources of error: error in forming the right-hand side b, error in forming A, and error
when computing the solution to x with a backward stable algorithm.

Suppose the iterate (x,z) is within a small é-neighbourhood of the central path
without residing too close to the boundary of the feasible region (precisely speaking,
c(x) is asymptotically bounded from below by d), and p = O(J). Then the perturba-
tion incurred when computing A = W — JTX.J is roughly proportional to €machine/d,
and furthermore the perturbation in the computed value of b = —V f, () is on the
order of the gradient noise &€ > €machine-

(2.42)

(" — w55 + (9" = 9)5F :_[ g -9 }
(W=l |’

1%Symmetrization of the primal-dual system, as discussed in the next section, is benign in the sense
that it does not affect the stability of the primal-dual search direction; see Wright (1998).

"'Note that Wright (2001) presents an alternate derivation of stability that does not require the
linear independence constraint qualification.
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The relative condition numbers k(A) of the matrix-vector products Az and z =
A~1b are bounded from above by ||A||[|[A™!||, where ||A| is an induced matrix norm
of A. This result is given in (Trefethen & Bau, 1997). The problem is that A—
the matrix arising from the reduced system (2.20)—is notoriously ill-conditioned as
approaches 0, so the bound on the relative condition number is very poor. Fortunately,
we are able to derive a tighter bound by exploiting special structure present within
the matrix.

The first observation is that the matrix A = W — J7X.J is almost entirely domi-
nated by a matrix that lies in the space spanned by the gradient vectors Ve;(x) of the
active constraints 7. The same observation holds for b. The perturbations of A and
b are also restricted to this space. This is fortunate because this space corresponds
precisely to a well-conditioned invariant subspace of A.

Let A = UXV be the singular value decomposition of A (Strang, 1980). By
dividing the matrix of singular values ¥ into sub-blocks ¥j;ge and Xgman, such that
Ylarge contains a set of large singular values and Ygma contains a collection of small
singular values, it can be shown that the relative condition number of x projected onto
the invariant subspace of Yjsrge is bounded by || Xiargel| HEgrlgeH. When the separation
of the singular values within the large set is much smaller than the separation of the
full set, then the bound ||Xargel| ||Z|;r1geH is much tighter than the bound | Al|[|A~Y.

The matrix in (2.20) possesses precisely the properties we just stated. Without
the previous considerations, the absolute perturbations of the solution Az would be
on the order of the magnitude of the noise €, which would be a horrific amount of
error when the search direction is close to zero, implying we are near the solution of
the constrained optimization problem. From the results established so far, however,
it can be shown that if we take into account perturbations in the computed right-
hand side b, the computed solution Ax projected onto the range space of active
constraints has a condition number on the order of de instead, a factor of § better
than the previously stated bound. And perturbations from executing the backward
stable algorithm only contribute an additional factor on the order of d€pachine to the
condition number. The error bounds for the remaining portion of Az are much worse,
but it is precisely this portion—the projection onto the the null space of the Jacobian
of the active constraints—that has negligible impact on determination of the first-
order KKT conditions near the solution (Nocedal & Wright, 2006, Theorem 12.1).
Beware that these results give us bounds on the absolute error of the solution, so
there is no guarantee that the relative error will be small when Ax approaches zero.
Also note that these error bounds will likely be poor when J is ill-conditioned.

Finally, Wright (1998) applies analogous and rather lengthy analysis to the dual
search direction to show that the computed value of Az in (2.21) has a similar con-
dition number. In conclusion, an off-the-shelf backward stable Cholesky factorization
can be used to solve (2.20) so long as the iterates are feasible.

Of concern is the ill-effect of cancellation in the constraints near ¢;(z) = 0; see
Example 12.3 of Trefethen and Bau (1997). I defer the issue since cancellation did not
arise in the experiments. Note that even though the full primal-dual system (2.16) is
well-conditioned, the solution is not any more accurate because the right-hand side

36



incurs cancellation errors.

2.4 Damped quasi-Newton approximations

The Hessian of the objective is implicated in computation of the primal-dual search
direction. In the stochastic setting, however, it may be difficult to obtain reliable
estimates of the second-order derivatives. Furthermore, when the problem is large
and the Hessian is dense, computing the exact Newton step may be computationally
infeasible. The simplest—if not most effective—strategy is to simply ignore the scaling
of the problem, and replace H with the identity. This is the primal-dual interior-point
analog of steepest descent, and it is what I used for all the experiments in this chapter.
This approach, however, will not work when the problem is severely ill-conditioned,
as in the probabilistic inference problems I explore in the next chapter. The interior-
point method has the virtue that it is easy to incorporate second-order information
into the primal-dual search direction. By contrast, this is not so easily done for
projection and sub-gradient strategies (Andrew & Gao, 2007; Gafni & Bertsekas,
1984). In this section, I propose two new, robust ways to obtain stochastic estimates
of second-order partial derivatives based on quasi-Newton methods (Dennis & Moré,
1977; Nocedal & Wright, 2006).

2.4.1 Damped Barzilai-Borwein method

The first strategy is no more costly than the steepest descent direction. It is based
on the simple quasi-Newton method described in Barzilai and Borwein (1988) and
discussed in Fletcher (2005). The basic idea of the Barzilai-Borwein method is to find
the scalar § that minimizes

3llBAz — AylP?, (2.44)

where Ax is not the search direction, but rather the difference between two iterates
at some intermediate iteration of the optimization routine, and Ay is the difference
of the gradients at those same two points. The above expression is the norm of the
secant equation (Dennis & Moré, 1977), in which the full quasi-Newton approximation
to the Hessian is replaced by the identity matrix times scalar 3. So long as the dot
product Az” Ay is positive—which is guaranteed so long as the Wolfe conditions are
satisfied (Nocedal & Wright, 2006)—the Barzilai-Borwein method provides us with a
positive-definite Hessian approximation. In the stochastic setting, the differences Ay
are noisy, so there is no way to ensure the Wolfe conditions hold. So I propose the
following recourse.

Instead, I propose to directly apply the Robbins-Monro method to minimizing
the secant equation (2.44). This leads to damped Barzilai-Borwein updates. Taking
first and second derivatives of the secant equation, the Newton step leads to Robbins-
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Monro updates of the form

AaTA
i y’“). (2.45)

Br+1 = Bk — ak (ﬁk - m

This update should be skipped whenever A:U{Ayk makes (41 very small.
In practice, I've found that this stochastic version of the Barzilai-Borwein method

finds an appropriate global scaling of the objective whenever the objective is convex.

Based on my experience, I do not recommend the stochastic Barzilai-Borwein method

for non-convex optimization problems.

2.4.2 Damped BFGS method

The second strategy employs a full quasi-Newton approximation to the Hessian. This
will not be appropriate for larger optimization problems, as the complexity of each
iteration is O(n?) or O(n®) when we have constraints, where n is the number of
(primal) optimization variables. This strategy is based on the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update (Dennis & Moré, 1977). Since satisfaction of the
Wolfe conditions cannot be guaranteed, I employ the damped updates proposed in a
1978 paper by Powell. The derivation of the damped BFGS update is straightforward.
First of all, the BFGS update of the Hessian aproximation B is

AyAyT BAzAz"B

B(new) — B
T Ay, A (An,BAz)

(2.46)

where (u,v) is the dot product of u and v. It is a symmetric update of rank two.
To retain a positive-definite quasi-Newton approximation, the strategy is to check its
determinant. Applying the matrix determinant identity

det(A + uvT) = det A(1 + 0T A ), (2.47)
the determinant of a rank-two update works out to be
det(A + upud + uzul) = det A1+ ul A7) (1 + ul (X + wpud) " tus).

Next, applying the Sherman-Morrison-Woodbury formula (Dennis & Schnabel, 1996),
which states the the inverse of a rank-one update is given by

(A+uww’)™ = A7 — (1 + 0T A7 ) (A uwA ™), (2.48)
we obtain the following formula for the rank-two update of the determinant:

det(A + ujud + uzul)
= det A{(1 +uf A7 ) (1 + ud A7 uy) — (uf A7 uy) (ul A7 uz) ). (2.49)

Applying this expression to the BFGS update (2.46), then rearranging and simplify-
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ing, we find that

Ay, Azx)
det BOY) — dot B x AU 82)_ 2.50
) 7" Ay, BAx) (2.50)
Now suppose that we want the determinant of B™%) to be at least as large as
the determinant of B times some factor v € (0,1). This is equivalent to asking that

g 2 251)

To satisfy this condition, Powell (1978) proposes to replace Ay by a damped version
tAy+(1—t) BAz, and then find the largest step ¢ € [0, 1] that satisfies (2.51). In effect,
BAz represents the curvature information accumulated from previous iterations, and
Ay is the new curvature. Plugging the damped update into (2.51), we arrive at

F<(1—n) (Az, BAx)

- (BAx — Ay, Az)’ (2.52)

There are two cases to consider. If the largest ¢ that satisfies the above condition is
greater than 1 or, in other words, if

(Ay, Az) > v(Az, BAx), (2.53)

then set ¢ to 1. This corresponds to an un-damped update. Otherwise, set ¢ so
that it satisfies (2.52) with equality. In the stochastic setting, the damped update
should be modified so that ¢t is bounded by some decreasing sequence of step sizes,
such as {ay}. For application to stochastic approximation, I found that setting the
damping factor + to a number between 0.75 an 0.9 worked well. For unconstrained
problems, a computational complexity of O(n?) can be achieved at each iteration by
keeping track of both a quasi-Newton approximation to the Hessian and its inverse.
In practice, I found that damped BFGS updates proved to be much more stable than
the Barzilai-Borwein approximation for non-convex optimization problems.

To conclude this section, I would like to briefly note that it is an open question
how—or whether it is possible—to implement damped versions of limited-memory
quasi-Newton methods for stochastic approximation. These methods are ideally
suited to large problems, as computing the primal-dual search direction with a limited-
memory quasi-Newton approximation imposes a relatively small additional cost over
the steepest descent direction (Byrd et al., 1994; Waltz et al., 2006). It is not clear,
however, how the notion of damped updates can be implemented in a principled
manner in limited-memory representations. Limited-memory updates are used in
Schraudolph et al. (2007a), but they do not address the question I pose here, nor is
it clear whether their approach extends to other stochastic approximation problems,
constrained or not.
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2.5 On-line L1 regularization

In this section, I apply my previous findings to the problem of computing an Li-
regularized least squares estimator in an “on-line” manner; that is, by making ad-
justments to each new training example without having to review previous training
instances. The results presented in this section extend quite naturally to other su-
pervised and unsupervised learning problems. I start with some background behind
linear regression (Sec. 2.5.1) and L; regularization (Sec. 2.5.2), motivate the on-line
learning approach and connect it to stochastic approximation (Sec. 2.5.4), draw some
experimental comparisons with existing methods (Sec. 2.5.7), then show that the
proposed algorithm can also be used to filter spam (Sec. 2.5.8).

2.5.1 Linear regression

Consider the problem of learning a simple discriminative regression model under full
supervision. Suppose we are provided with a collection of n data points a; paired with
scalar outputs y;. It is a regression problem when the outputs are numbers on the real
line. Each of the training examples is a vector of length m, and each vector element is
an observed feature, so that a;; is the jth feature induced by the ¢th training example.

Treating each of the pairs (a;, y;) as independent and identically distributed events,
our goal is to come up with a conditional probability distribution that is able to
accurately predict an output y; given an input vector a;. The simple model assumed
here is a normal conditional probability density with mean asz and fixed variance
o2, where w is the vector of regression coefficients of length m. The coefficients are
the parameters of our regression model.

The least squares estimate w minimizes the mean squared error,

n m 2
MSE(U)) = % Zi:l (yz — ijlaijwj) . (254)

For a simple regression model, minimizing the mean squared error (2.54) is equiv-
alent to maximizing the likelihood of the training data. Linear regression based on
the maximum likelihood estimator is one of the basic statistical tools of science and
engineering and, while primitive, generalizes to many popular statistical estimators:
logistic regression, linear discriminant analysis, ANOVA, probabilistic kernel meth-
ods, kernel methods and support vector machines, Gaussian processes, and boosting
(Friedman et al., 2000; Hastie et al., 2001; Rasmussen & Williams, 2006). Adopting
matrix-vector notation, the mean squared error measure can be written as

MSE(w) = 2 [y — Auw]?, (2.55)

where A is the n X m matrix of training examples in which each row corresponds to
a single training example a;, y is a vector of training outputs of length n, and ||z|| is
the Euclidean norm of vector .
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2.5.2 L1 regularization

Because the least squares estimator is unstable when m is large, it can generalize
poorly to unseen examples. The standard cure is “regularization.” The classical
Tikhonov regularization technique, for example, favours estimators with a small Lo
or Euclidean norm (Hastie et al., 2001). An Ls penalty corresponds to a zero-mean
normal prior on the regression weights w. Regularization introduces bias, but typically
produces estimators that are better at predicting the outputs of unseen examples. The
mean squared error with an Li-penalty instead,

MSEY) (w) = g5y — Awl® + 3 [lwlls, (2.56)

not only prevents overfitting, but tends to produce estimators that shrink many of
their components w; to zero, resulting in sparse codes (Lee et al., 2008; Olshausen &
Field, 1997; Ravikumar et al., 2008).!2 Here, ||z||; is the L1 norm of vector x, which is
the sum of absolute values of . The scalar A > 0 controls for the level of regularization
(Sardy et al., 2000). Regularization based on the L; has been independently studied
in a variety of research contexts—by statisticians as the Lasso (Tibshirani, 1996),
by signal processing engineers as basis pursuit denoising (Chen et al., 1999), and by
mathematicians as total variation denoising (Rudin et al., 1992)—precisely because
it is effective at choosing useful features for prediction. Regularization based on the
L; norm also has important connections to the study of compressed sensing (Candes
et al., 2006; Donoho, 2006). See Tropp (2006) for a survey of recent mathematical
developments on learning with L; regularization.

When the loss function is formulated from the negative log-likelihood, the L;
penalty has the direct interpretation as a hierarchical Bayesian prior on the regression
coefficients w. The connection is made by introducing independent normal priors with
zero mean and variances 7; on the regression coefficients w;, and in turn sampling
each of the latent variances 7; from an exponential prior with mean 1/v (Figueiredo,
2003). Integrating out the latent variance 7; leads to the Laplace density

p(w|v) = [p(w]|7)p(r|7) dr o exp(—v/7/2|w]), (2.57)

which is equivalent to the L penalty in (2.56) when the penalty strength is A is
equal to \/W Analogous connections have been made between more sophisticated
hierarchical priors and norms on groups of variables (van den Berg et al., 2008; Yuan &
Lin, 2006). The equivalence to the Laplace prior can be used to derive an expectation
maximization (EM) algorithm, in which the E step consists of computing expectations
with respect to the latent variables 7;. The EM formulation leads to a non-convex
problem, and is subsumed by the sub-gradient method described below.

12Regularization may also be posed instead as a constraint on the L; norm.
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2.5.3 Stochastic gradient and the Widrow-Hoff delta rule

The partial derivative of the mean squared error (2.54) with respect to a single re-
gression weight is

OMSE
Owj N

T
—% >2iaij(yi — a; w).
The gradient can be written more compactly with matrix-vector notation:
VMSE = —1 47 (y — Aw). (2.58)

We can treat the gradient of the mean squared error as a sample expectation over
responses of the form

gi = —ai(y; — al w). (2.59)
So the on-line or stochastic update

w) = w + ta;(y; — al w), (2.60)
improves the linear regression with only a single data point (¢ > 0 is the step size).
This is the famed “delta rule” of Widrow and Hoff (Mitchell, 1997).13

The on-line update (2.60) corresponds to the Robbins-Monro update (2.1) if we
make the following connection: set the iterate x to be the vector of regression coeffi-
cients w, define the objective f(x) to be the mean squared error MSE(w), define the
noisy gradient estimate to be (2.59), and the ith iteration of stochastic approximation
corresponds to the ith data pair (a;,y;). As I showed above, the expectation of the
the stochastic gradients g; recovers the exact gradient VMSE.

Since standard “batch” learning requires a full pass through the data for each gra-
dient evaluation, an on-line update of the form (2.60) may be the only viable option
when faced with a genetic sequence (Xing et al., 2001), an overcomplete wavelet dictio-
nary (Chen et al., 1999), or an image collection obtained from a web-based annotation
tool (Russell et al., 2008). On-line learning for regression and classification—including
Lo regularization—is a well-researched topic, particularly for neural networks (Saad,
1998) and support vector machines (Kivinen et al., 2004; Shalev-Shwartz et al., 2007).
On-line learning with L; regularization, despite its ascribed benefits, has strangely
avoided study. To our knowledge, the only published work that has approached the
problem is Zheng (2005) using sub-gradient methods.

In the following, I present an on-line Li-regularized learning rule based on the pre-
viously proposed interior-point stochastic approximation method. Many specialized
implementations of interior-point methods have been developed for Li-regularized

13The descent direction given by the negative gradient can be a poor choice because it ignores the
scaling of the problem. Much work has focused on improving the delta rule (Amari, 1998; Roux &
Bengio, 2000; Schraudolph et al., 2007a), sometimes at an increased cost per iteration. In this study,
I stick to learning based on the gradient direction.
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least squares problems (Chen et al., 1999; Johnson et al., 2000; Kim et al., 2007). In
the derivations below, I replace the mean squared error with a generic loss function
¢(w), so that the connection is immediately made to other L;-regularized learning
problems such as logistic regression (which is used to implement the spam filter in
Sec. 2.5.8), probit regression, restricted Boltzmann machines (Lee et al., 2008), and
on-line learning for conditional random fields (Vishwanathan et al., 2006).

In principle, feature selection comes “for free” with L; regularization. But in
reality, the penalized objective is difficult to optimize due to the non-differentiability
of the absolute values around zero. There are two possible strategies for coping with
this difficulty. The first is to modify existing unconstrained optimization methods
to handle nonsmoothness of the objective. This is the strategy behind the sub-
gradient method (Sec. 2.5.6). The second approach is to reformulate the nonsmooth,
unconstrained problem as a smooth but constrained optimization problem. This is
accomplished through introduction of auxiliary variables. I then describe interior-
point (Sec. 2.5.4) and projection (Sec. 2.5.5) approaches to solving the constrained
formulation for the case when we have on-line estimates of the gradient.

2.5.4 Primal-dual interior-point method

In this section, I describe two alternative constrained formulations of the Li-regularized
objective. The first formulation is described in Chen et al. (2001) and Tibshirani
(1996). It consists of splitting the regression coefficients w into positive and negative
components. Since the optimization variables are all constrained to be positive, the
non-differentiable sum of absolute values can be replaced by a simple sum. The second
idea is to introduce auxiliary variables that bound the magnitude of the regression
coefficients (Kim et al., 2007). This approach also used in Sec. 11.8.2 of Boyd and
Vandenberghe (2004) for the related problem of minimizing the L; norm of a linear
system of equations. I will discuss the pros and cons of each of these two formulations.

There is actually a third, lesser-known constrained formulation that Andersen
(1996) suggested for the related problem of minimizing the sum of Euclidean norms.
The basic idea is to replace the absolute values by squares of square roots, and then
introduce an additional variable that prevents the square roots from ever reaching
zero. While this approach was originally suggested for a primal interior-point method,
it is easily extended to a primal-dual algorithm. In practice, however, I found that
this approach was inferior to the first two, likely due to instability of the derivatives.

First constrained formulation. We arrive at the first constrained formulation
by dividing the regression weights into positive and negative components like so:
w = wy — w—, where wy > 0 and w— > 0. In doing so, we double the number of
optimization variables. To simplify the presentation, I use = to represent the full set
of 2m optimization variables (w4, w_). I can now rewrite the objective and state the

“The problem of minimizing the sum of Euclidean norms and the discovery of its dual has an
interesting historical connection (Andersen et al., 2000).
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constrained optimization problem:

minimize  f(z) = (w) + %Z?Z z;,

2.61
subject to x > 0. ( )

where £(w) is the specified loss function. For instance, for a standard linear regression
model the loss function ¢(w) is given by the mean squared error MSE(w). The loss
function for a logistic regression model is derived in Sec. 2.5.8. What we have here is
an optimization problem with bound constraints.

The main ingredient in the interior-point method is the primal-dual Newton step
i.e. the solution to (2.16). From the augmented system (2.20), the primal Newton
step for (2.61) is given by the simple expression

(V2(w) + £)Az = —Vl(w) — 21 + p/z, (2.62)

where ¥ = X~1Z. There is one dual variable for each of the 2m bound constraints.
The dual step Az is recovered according to

Az =p/r —z — XAx. (2.63)

It is now easy to implement the interior-point stochastic approximation method for
on-line learning with L; regularization. The regularized on-line update is obtained by
direct application of the primal-dual interior-point search direction (2.62,2.63), with
a stochastic gradient estimate in place of the gradient V/(w), and identity in place of
the Hessian V2/(w). Similarly, the regularized Widrow-Hoff delta rule is obtained by
substituting V/(w) for the on-line gradient observation g; as it is defined in (2.59).

Since a feasible primal-dual iterate must lie within the positive quadrant, it is
easy to calculate the largest step length a; > 0 that satisfies the constraints without
having to execute a full backtracking line search (Fig. 2.1). Consider a single entry
u of the vector (x,z). When the corresponding search direction Aw is positive, u
moves away from the boundary, and so any step size is acceptable. When the search
direction is negative, the largest acceptable step size is given by —u/Au.

The principle drawback of this constrained formulation is that the Hessian of the
loss function with respect to the transformed coefficients (w4, w_) has unbounded
condition number. This was not an obstacle to implementation of the Widrow-Hoff
delta rule because I replaced the Hessian by the identity matrix. However, if we were
to include second-order information (say, using the damped quasi-Newton method
described in Sec. 2.4), then we need to a different strategy must be considered.

Note when calculating the Lasso estimate (2.56) for several values of A, say, for
cross-validation (Tibshirani, 1996), a good initial guess can be obtained from a pre-
vious run (see Sec. 2.2).

Second constrained formulation. Another way to transform the nonsmooth
optimization problem into a constrained, differentiable problem is to introduce an
auxiliary variable u; paired with every parameter w;. The constrained optimization
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problem is then given by

minimize  {(w) + A} u;

2.64
subject to —u < w < wu. ( )

To simplify the presentation, I set z = (w, u) to be the full collection of optimization
variables, and I rewrite the inequality constraints to be of the form c¢(x) < 0 by

writing the lower bounds on w as c¢p(x) = —w — u, and the upper bounds on w as
cy(z) = w — u. Expanding out the terms in the augmented system (2.20), we obtain
Dy Dy Au 21+ p/en(z) + p/ev(a) ’ '

in which I define the diagonal matrices Dy = X + Xy, Do = X — 3y, X = CL_lZL
and Xy = C[}lZU. A solution Az = (Aw, Au) to the above linear system gives us the
primal Newton search direction. When the Hessian of the loss function is replaced
by a diagonal matrix, the matrix above is block-diagonal and is easily decomposed
into sparse Cholesky factors. The search direction for the dual variables is recovered
according to

Az = —zp — pfen(z) + 2n(Au + Aw) (2.66)
Azy = —zy — p/eu(z) + Bu(Au — Aw), (2.67)

where zy, is the set of Lagrange multipliers associated with the lower bounds ¢y, (),
and zy is the set of Lagrange multipliers corresponding to the upper bounds ¢y (z). As
before, the alternative formulation of the regularized delta rule consists of the solution
to (2.65-2.67) with an on-line gradient estimate, and with the Hessian replaced by
the identity matrix.

Now I ask, what is the largest step length a > 0 we can take such that the
constraints on the primal and dual variables remain satisfied? The constraints z > 0
on the dual variables are handled just as I've described above. Next, consider the
largest step length such that the single inequality constraint —u* < w”* is satisfied
(here I omit the subscripts on w; and u;). First we need to check whether the search
direction (Aw,Au) is moving toward the boundary. This occurs when the gradient
of w4+ u > 0 and the search direction form an angle with each other that is greater
than 90 degrees, implying Aw + Au < 0. If this condition holds, then we need to
solve for the largest step size a such that —u* = w*. The solution is given by

a=—(w+u)/(Aw + Au). (2.68)

The search direction (Aw, Au) points toward the constraint boundary w* < u* if the
gradient of u —w > 0 and the search direction form an angle greater than 90 degrees;
i.e. Au— Aw < 0. If this holds, we solve for a such that w* = u*, obtaining

a=—(w—u)/(Aw — Au). (2.69)
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Figure 2.4: Tllustration of the projection operator for the constraints x > 0.

I’d like to conclude this section by pointing out an immediate advantage of the
interior-point method over other methods mentioned in this chapter: the derivation
of the Li-regularized delta rule presented here extends without too much effort to
more sophisticated regularized schemes that employ, for instance, group norms.

2.5.5 Projected gradient

The projected gradient algorithm is founded on a very simple idea: whenever the it-
erate lies outside the feasible set, project back to the closest point within the feasible
set (Bertsekas, 1982). For the constrained formulation with bound constraints (2.61),
this projection is easily done: each new iterate xyy1 is taken to be the maximum of
the stochastic gradient update (2.1), and 0. This projection operator is illustrated
in Fig. 2.4 for a small problem with two variables. The feasible set is depicted by
the shaded region. In projected gradient, we first follow the negative gradient. Since
the new point violates the constraint z; > 0, we project the iterate to the closest
point within the feasible set, which is simply x; = 0. This example illustrates why
projected gradient is well-suited to the task of learning with L, regularization: un-
like the interior-point method, it sets the regression coefficients exactly to zero. This
example also illustrates a potential drawback: when we are near the boundary of the
feasible set, the projection operator may induce bias, leading to slow progress. Pro-
jected gradient does have asymptotic guarantees of convergence for convex stochastic
approximation problems (Bertsekas, 1999; Poljak, 1978).
Formally, the projection operator consists of computing the point * that solves

minimize ||z — 2*||?

subject to ¢(z*) <0, (2.70)

where z is the new point that may or may not be feasible. For the bound-constrained
formulation, this works out to be a simple maximum operation, as I illustrated above.
The projection operator for the alternative constrained formulation (2.64) is also not
very hard to derive. For more complicated forms of constraints, however, there may be
no easy or closed-form solution to (2.70). Specialized algorithms have been developed
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for specific types of constraints—see, for instance, Duchi et al. (2008) and van den
Berg et al. (2008)—but in general the projection may introduce a great deal of
overhead. The algorithm of Dykstra (1983) applies to any feasible set formed by the
intersection of arbitrary convex constraints, but it may be computationally intensive
to execute because it works by iteratively projecting onto the individual convex sets.

Another significant drawback is that projected gradient may not work well for
poorly-scaled problems. Second-order information can be incorporated into the pro-
jected Robbins-Monro updates, but only incompletely (Gafni & Bertsekas, 1984). By
contrast, second-order information is easily incorporated into the regularized delta
rule derived from primal-dual interior-point methods. See Schmidt et al. (2007) for
more details on projected gradient and two-metric projection algorithms applied to
learning problems with L; regularization.

2.5.6 Sub-gradient method

The sub-gradient method is a direct application of the necessary and sufficient first-
order optimality conditions for the Li-regularized objective. From Schmidt et al.
(2007), the optimality conditions are

of __ .

Wj = —)\ lf U]] > 0,

o7 — it w; <0, (2.71)

ow;

9 .
2L <x ifw; =0,

In the stochastic version of the algorithm, of course, the partial derivatives are re-
placed by noisy estimates.

The orthant-wise sub-gradient algorithm of Andrew and Gao (2007) allows us to
incorporate second-order information to a limited degree. The orthant-wise steps also
have the effect of promoting sparsity, which may be useful in certain cases. Variations
on the basic sub-gradient approach are discussed in detail in Schmidt et al. (2007).

2.5.7 Experiments

I ran four small experiments to assess the reliability and shrinkage effect of the interior-
point stochastic gradient method for linear regression with L; regularization; refer to
Fig. 2.1 and the primal-dual Newton step (2.62,2.63). I also studied four alternatives
to the proposed method: 1) the sub-gradient method described in Sec. 2.5.6, 2) the
projected gradient method described in Sec. 2.5.5, 3) a smoothed, unconstrained
approximation to (2.56), and 4) the augmented Lagrangian approach described in
Wang and Spall (2003). See Schmidt et al. (2007) for a description o the smoothed
approximation, and an in-depth discussion of the merits of applying the first three
optimization approaches to L regularization. All these methods have a per-iteration
cost on the order of the number of features.

Method. For the first three experiments, I simulated 20 data sets following the
procedure described in Sec. 7.5 of Tibshirani (1996). Each data set had n = 100
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Figure 2.5: (left) Performance of constrained stochastic gradient methods for different
step size sequences. (Tight) Performance of methods for increasing levels of variance
in the dimensions of the training data. Error is measured in terms of the difference
between the exact solution and the on-line estimate. Note the logarithmic scale in
the vertical axis.

observations with m = 40 features. The observations were given by x;; = z;; + 2;,
where each z; was drawn from the standard normal, and each z;; was drawn indepen-
dently and identically from the normal distribution with variance o?. The variances
022 were, in turn, drawn from the inverse Gamma with shape 2.5 and scale v = 1.
Note that the mean of the inverse Gamma variance o7 is proportional to v. The true
regression coefficients were defined to be w = (0,...,0,2,...,2,0,...,0,2,...,2)T
with 10 repeats in each block of zeros and twos. Outputs were generated according
to y; = wlz; + € with standard Gaussian noise e. Each stochastic gr